Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673871

RESUMEN

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Asunto(s)
Ketamina , Microglía , Ratas Sprague-Dawley , Sinapsis , Animales , Ketamina/administración & dosificación , Ketamina/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Ratas , Masculino , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Traumatismos Cerrados de la Cabeza/patología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Cuerpos Geniculados/patología , Cuerpos Geniculados/efectos de los fármacos , Conmoción Encefálica/patología , Conmoción Encefálica/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Sinapsinas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación
2.
Bioengineering (Basel) ; 10(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37627826

RESUMEN

Traumatic brain injury (TBI) affects millions of people annually, and most cases are classified as mild TBI (mTBI). Ketamine is a potent trauma analgesic and anesthetic with anti-inflammatory properties. However, ketamine's effects on post-mTBI outcomes are not well characterized. For the current study, we used the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), which replicates the biomechanics of a closed-head impact with resulting free head movement. Adult male Sprague-Dawley rats sustained a single-session, repeated-impacts CHIMERA injury. An hour after the injury, rats received an intravenous ketamine infusion (0, 10, or 20 mg/kg, 2 h period), during which locomotor activity was monitored. Catheter blood samples were collected at 1, 3, 5, and 24 h after the CHIMERA injury for plasma cytokine assays. Behavioral assays were conducted on post-injury days (PID) 1 to 4 and included rotarod, locomotor activity, acoustic startle reflex (ASR), and pre-pulse inhibition (PPI). Brain tissue samples were collected at PID 4 and processed for GFAP (astrocytes), Iba-1 (microglia), and silver staining (axonal injury). Ketamine dose-dependently altered locomotor activity during the infusion and reduced KC/GRO, TNF-α, and IL-1ß levels after the infusion. CHIMERA produced a delayed deficit in rotarod performance (PID 3) and significant axonal damage in the optic tract (PID 4), without significant changes in other behavioral or histological measures. Notably, subanesthetic doses of intravenous ketamine infusion after mTBI did not produce adverse effects on behavioral outcomes in PID 1-4 or neuroinflammation on PID 4. A further study is warranted to thoroughly investigate beneficial effects of IV ketamine on mTBI given multi-modal properties of ketamine in traumatic injury and stress.

4.
J Neuroinflammation ; 19(1): 75, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379262

RESUMEN

BACKGROUND: Ketamine, a multimodal dissociative anesthetic drug, is widely used as an analgesic following traumatic injury. Although ketamine may produce anti-inflammatory effects when administered after injury, the immunomodulatory properties of intravenous (IV) ketamine in a non-inflammatory condition are unclear. In addition, most preclinical studies use an intraperitoneal (IP) injection of ketamine, which limits its clinical translation as patients usually receive an IV ketamine infusion after injury. METHODS: Here, we administered sub-anesthetic doses of a single IV ketamine infusion (0, 10, or 40 mg/kg) to male and female Sprague-Dawley rats over a 2-h period. We collected blood samples at 2- and 4-h post-ketamine infusion to determine plasma inflammatory cytokine levels using multiplex immunoassays. RESULTS: The 10 mg/kg ketamine infusion reduced spontaneous locomotor activity in male and female rats, while the 40 mg/kg infusion stimulated activity in female, but not male, rats. The IV ketamine infusion produced dose-dependent and sex-specific effects on plasma inflammatory cytokine levels. A ketamine infusion reduced KC/GRO and tumor necrosis factor alpha (TNF-α) levels in both male and female rats, interleukin-6 (IL-6) levels in female rats, and interleukin-10 (IL-10) levels in male rats. However, most cytokine levels returned to control levels at 4-h post-infusion, except for IL-6 levels in male rats and TNF-α levels in female rats, indicating a different trajectory of certain cytokine changes over time following ketamine administration. CONCLUSIONS: The current findings suggest that sub-anesthetic doses of an IV ketamine infusion may produce sex-related differences in the effects on peripheral inflammatory markers in rodents, and further research is warranted to determine potential therapeutic effects of an IV ketamine infusion in an inflammatory condition.


Asunto(s)
Ketamina , Analgésicos , Animales , Citocinas , Femenino , Humanos , Infusiones Intravenosas , Ketamina/toxicidad , Masculino , Ratas , Ratas Sprague-Dawley
5.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163844

RESUMEN

Although women and men are equally likely to receive ketamine following traumatic injury, little is known regarding sex-related differences in the impact of ketamine on traumatic memory. We previously reported that subanesthetic doses of an intravenous (IV) ketamine infusion following fear conditioning impaired fear extinction and altered regional brain glucose metabolism (BGluM) in male rats. Here, we investigated the effects of IV ketamine infusion on fear memory, stress hormone levels, and BGluM in female rats. Adult female Sprague-Dawley rats received a single IV ketamine infusion (0, 2, 10, or 20 mg/kg, over a 2-h period) following auditory fear conditioning (three pairings of tone and footshock). Levels of plasma stress hormones, corticosterone (CORT) and progesterone, were measured after the ketamine infusion. Two days after ketamine infusion, fear memory retrieval, extinction, and renewal were tested over a three-day period. The effects of IV ketamine infusion on BGluM were determined using 18F-fluoro-deoxyglucose positron emission tomography (18F-FDG-PET) and computed tomography (CT). The 2 and 10 mg/kg ketamine infusions reduced locomotor activity, while 20 mg/kg infusion produced reduction (first hour) followed by stimulation (second hour) of activity. The 10 and 20 mg/kg ketamine infusions significantly elevated plasma CORT and progesterone levels. All three doses enhanced fear memory retrieval, impaired fear extinction, and enhanced cued fear renewal in female rats. Ketamine infusion produced dose-dependent effects on BGluM in fear- and stress-sensitive brain regions of female rats. The current findings indicate that subanesthetic doses of IV ketamine produce robust effects on the hypothalamic-pituitary-adrenal (HPA) axis and brain energy utilization that may contribute to enhanced fear memory observed in female rats.


Asunto(s)
Anestésicos Disociativos/administración & dosificación , Encéfalo/diagnóstico por imagen , Condicionamiento Psicológico/efectos de los fármacos , Miedo/efectos de los fármacos , Glucosa/metabolismo , Ketamina/administración & dosificación , Anestésicos Disociativos/efectos adversos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Fluorodesoxiglucosa F18/administración & dosificación , Fluorodesoxiglucosa F18/metabolismo , Infusiones Intravenosas , Ketamina/efectos adversos , Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley , Tomografía Computarizada por Rayos X
6.
Addict Biol ; 27(1): e13064, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34036710

RESUMEN

Early life stress presents an important risk factor for drug addiction and comorbid depression and anxiety through persistent effects on the mesolimbic dopamine pathways. Using an early life stress model for child neglect (a single 24 h episode of maternal deprivation, MD) in rats, recent published works from our lab show that MD induces dysfunction in the ventral tegmental area and its negative controller, the lateral habenula (LHb). MD-induced potentiation of glutamatergic synaptic transmission onto LHb neurons shifts the coordination of excitation/inhibition (E/I) balance towards excitation, resulting in an increase in the overall spontaneous neuronal activity with elevation in bursting and tonic firing, and in the intrinsic excitability of LHb neurons in early adolescent male rats. Here, we explored how MD affects intravenous morphine self-administration (MSA) acquisition and sucrose preference as well as glutamatergic synaptic function in LHb neurons of adult male rats self-administering morphine. We found that MD-induced increases in LHb neuronal and glutamatergic synaptic activity and E/I ratio persisted into adulthood. Moreover, MD significantly reduced morphine intake, triggered anhedonia-like behaviour in the sucrose preference test and was associated with persistent glutamatergic potentiation 24 h after the last MSA session. MSA also altered the decay time kinetics of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) currents in LHb neurons of control rats during this time period. Our data highlight that early life stress-induced glutamatergic plasticity in LHb may dampen the positive reinforcing and motivational properties of both natural rewards and opioids, and may contribute to the development of anhedonia and dysphoric states associated with opioids.


Asunto(s)
Habénula , Morfina , Neuronas , Estrés Psicológico , Transmisión Sináptica , Animales , Masculino , Ratas , Dopamina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido Glutámico/metabolismo , Habénula/efectos de los fármacos , Morfina/farmacología , Neuronas/efectos de los fármacos , Receptores AMPA/metabolismo , Autoadministración , Transmisión Sináptica/efectos de los fármacos , Área Tegmental Ventral/metabolismo
7.
IBRO Neurosci Rep ; 11: 42-51, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34286313

RESUMEN

Although ketamine, a multimodal dissociative anesthetic, is frequently used for analgesia and treatment-resistant major depression, molecular mechanisms of ketamine remain unclear. Specifically, differences in the effects of ketamine on neuroplasticity-related proteins in the brains of males and females need further investigation. In the current study, adult male and female Sprague-Dawley rats with an indwelling jugular venous catheter received an intravenous ketamine infusion (0, 10, or 40 mg/kg, 2-h), starting with a 2 mg/kg bolus for ketamine groups. Spontaneous locomotor activity was monitored by infrared photobeams during the infusion. Two hours after the infusion, brain tissue was dissected to obtain the medial prefrontal cortex (mPFC), hippocampus including the CA1, CA3, and dentate gyrus, and amygdala followed by Western blot analyses of a transcription factor (c-Fos), brain-derived neurotrophic factor (BDNF), and phosphorylated extracellular signal-regulated kinase (pERK). The 10 mg/kg ketamine infusion suppressed locomotor activity in male and female rats while the 40 mg/kg infusion stimulated activity only in female rats. In the mPFC, 10 mg/kg ketamine reduced pERK levels in male rats while 40 mg/kg ketamine increased c-Fos levels in male and female rats. Female rats in proestrus/estrus phases showed greater ketamine-induced c-Fos elevation as compared to those in diestrus phase. In the amygdala, 10 and 40 mg/kg ketamine increased c-Fos levels in female, but not male, rats. In the hippocampus, 10 mg/kg ketamine reduced BDNF levels in male, but not female, rats. Taken together, the current data suggest that subanesthetic doses of intravenous ketamine infusions produce differences in neuroplasticity-related proteins in the brains of male and female rats.

8.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998470

RESUMEN

Ketamine, a multimodal anesthetic drug, has become increasingly popular in the treatment of pain following traumatic injury as well as treatment-resistant major depressive disorders. However, the psychological impact of this dissociative medication on the development of stress-related disorders such as post-traumatic stress disorder (PTSD) remains controversial. To address these concerns, preclinical studies have investigated the effects of ketamine administration on fear memory and stress-related behaviors in laboratory animals. Despite a well-documented line of research examining the effects of ketamine on fear memory, there is a lack of literature reviews on this important topic. Therefore, this review article summarizes the current preclinical literature on ketamine and fear memory with a particular emphasis on the route, dose, and timing of ketamine administration in rodent fear conditioning studies. Additionally, this review describes the molecular mechanisms by which ketamine may impact fear memory and stress-related behaviors. Overall, findings from previous studies are inconsistent in that fear memory may be increased, decreased, or unaltered following ketamine administration in rodents. These conflicting results can be explained by factors such as the route, dose, and timing of ketamine administration; the interaction between ketamine and stress; and individual variability in the rodent response to ketamine. This review also recommends that future preclinical studies utilize a clinically relevant route of administration and account for biological sex differences to improve translation between preclinical and clinical investigations.


Asunto(s)
Analgésicos/farmacología , Anestésicos Disociativos/farmacología , Miedo/efectos de los fármacos , Ketamina/farmacología , Memoria/efectos de los fármacos , Animales , Trastorno Depresivo Mayor/tratamiento farmacológico , Vías de Administración de Medicamentos , Esquema de Medicación , Cálculo de Dosificación de Drogas , Extinción Psicológica , Miedo/psicología , Humanos , Memoria/fisiología , Roedores , Factores Sexuales , Trastornos por Estrés Postraumático/tratamiento farmacológico , Investigación Biomédica Traslacional
9.
Pharmacol Biochem Behav ; 199: 173042, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32976859

RESUMEN

Ketamine, a multimodal dissociative anesthetic drug, is widely used to treat various conditions including acute pain and treatment-resistant depression. We previously reported that subanesthetic doses of intravenous (i.v.) ketamine produced transient dissociative stereotypy and antinociception in male rats. However, sex-related differences in the effects of i.v. ketamine on these measures are not well characterized. Adult male and female Sprague-Dawley rats (10 weeks old) received an i.v. bolus saline or ketamine (2 and 5 mg/kg), and dissociative stereotypy (head weaving, ataxia, and circling) and natural behaviors (horizontal activity, rearing, and grooming) were quantified over a 10-min period. Ten minutes after the behavioral observation, antinociception was measured using a tail flick test. The i.v. ketamine administration increased head weaving, ataxia, circling, and horizontal activity while decreasing rearing and grooming behaviors in male and female rats. Following 5 mg/kg ketamine administration, ataxia was greater in female rats, while head weaving was greater in male rats. Among the female rats, head weaving was greater in the low estrogen group (diestrus phase) as compared to the high estrogen group (proestrus/estrus phase). Ketamine doses (2 and 5 mg/kg) produced antinociception in male and female rats, and female rats were more sensitive to the antinociceptive effects of 2 mg/kg ketamine. The current findings suggest that i.v. ketamine administration, a clinically relevant route of administration, may produce sex-related differences in dissociative behaviors and analgesia between males and females.


Asunto(s)
Analgesia , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Ketamina/administración & dosificación , Factores Sexuales , Conducta Estereotipada/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Inyecciones Intravenosas , Ketamina/farmacología , Masculino , Ratas , Ratas Sprague-Dawley
10.
Behav Brain Res ; 378: 112259, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31560919

RESUMEN

Ketamine is a multimodal dissociative anesthetic and analgesic that is widely used after traumatic injury. We previously reported that an analgesic dose of intravenous (IV) ketamine infusion (10 mg/kg, 2-h) after fear conditioning enhanced short-term fear memory in rats. Here, we investigated the effects of the same dose of an IV ketamine infusion on plasma stress hormone levels and long-term fear memory in rats. Adult male Sprague-Dawley rats (9-week-old with an average weight of 308 g upon arrival) received a ketamine infusion (0 or 10 mg/kg, 2-h) immediately after auditory fear conditioning (three auditory tone and footshock [0.6 mA, 1-s] pairings) on Day 0. After the infusion, a blood sample was collected from a jugular vein catheter for corticosterone and progesterone assays, and each animal was tested on tail flick to measure thermal antinociception. One week later, animals were tested on fear extinction acquisition (Day 7), fear extinction retrieval (Day 8), and fear renewal (Day 9). The IV ketamine infusion, compared to the saline infusion, reduced locomotor activity (sedation), increased tail flick latency (antinociception), and elevated plasma corticosterone and progesterone levels. The ketamine infusion did not alter long-term fear memory extinction or fear renewal. However, elevated corticosterone and progesterone levels resulting from the ketamine infusion were correlated with sedation, antinociception, and long-term fear memory renewal. These results suggest that individual differences in sensitivity to acute ketamine may predict vulnerability to develop fear-related disorders.


Asunto(s)
Anestésicos Disociativos/farmacología , Conducta Animal/efectos de los fármacos , Corticosterona/sangre , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Ketamina/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Recuerdo Mental/efectos de los fármacos , Nocicepción/efectos de los fármacos , Progesterona/sangre , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Administración Intravenosa , Anestésicos Disociativos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Ketamina/administración & dosificación , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...