Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 12(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38137702

RESUMEN

Accurate diagnosis of Left Ventricular Noncompaction Cardiomyopathy (LVNC) is critical for proper patient treatment but remains challenging. This work improves LVNC detection by improving left ventricle segmentation in cardiac MR images. Trabeculated left ventricle indicates LVNC, but automatic segmentation is difficult. We present techniques to improve segmentation and evaluate their impact on LVNC diagnosis. Three main methods are introduced: (1) using full 800 × 800 MR images rather than 512 × 512; (2) a clustering algorithm to eliminate neural network hallucinations; (3) advanced network architectures including Attention U-Net, MSA-UNet, and U-Net++.Experiments utilize cardiac MR datasets from three different hospitals. U-Net++ achieves the best segmentation performance using 800 × 800 images, and it improves the mean segmentation Dice score by 0.02 over the baseline U-Net, the clustering algorithm improves the mean Dice score by 0.06 on the images it affected, and the U-Net++ provides an additional 0.02 mean Dice score over the baseline U-Net. For LVNC diagnosis, U-Net++ achieves 0.896 accuracy, 0.907 precision, and 0.912 F1-score outperforming the baseline U-Net. Proposed techniques enhance LVNC detection, but differences between hospitals reveal problems in improving generalization. This work provides validated methods for precise LVNC diagnosis.

2.
Comput Methods Programs Biomed ; 214: 106548, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34861618

RESUMEN

BACKGROUND AND OBJECTIVE: Left ventricular non-compaction (LVNC) is an uncommon cardiomyopathy characterised by a thick and spongy left ventricle wall caused by the high presence of trabeculae (hyper-trabeculation). Recently, the percentage of the trabecular volume to the total volume of the external wall of the left ventricle (VT%) has been proposed to diagnose this illness. METHODS: This paper presents the use of a deep learning-based method to measure the (VT%) value and diagnose this rare cardiomyopathy. The population used in this research was composed of 277 patients suffering from hypertrophic cardiomyopathy. 134 patients only suffered hypertrophic cardiomyopathy, and 143 also suffered left ventricular non-compaction. Our deep learning solution is based on a 2D U-Net. This artificial neural network (ANN) was trained on short-axis magnetic resonance imaging to segment the left ventricle's internal cavity, external wall, and trabecular tissue. 5-fold cross-validation was performed to ensure the robustness of the results. The Dice coefficient of the three classes was computed as a measure of the precision of the segmentation. Based on this segmentation, the percentage of the trabecular volume (VT%) was computed. Two specialist cardiologists rated the segmentation produced by the neural network for 25 patients to evaluate the clinical validity of the outputs. The computed VT% was used to automatically diagnose the 277 patients depending on whether or not a given threshold was exceeded. A receiver operating characteristic analysis was also performed. RESULTS: According to the cross-validation results, the average and standard deviation of the Dice coefficient for the internal cavity, external wall, and trabeculae were 0.96±0.00, 0.89±0.00, and 0.84±0.00, respectively. The cardiologists rated 99.5% of the evaluated segmentations as clinically valid for diagnosis, outperforming existing automatic traditional tools. The area under the ROC curve was 0.94 (95% confidence interval, 0.91-0.96). The accuracy, sensitivity, and specificity values of diagnosis using a threshold of 25% were 0.87, 0.93, and 0.80, respectively. CONCLUSIONS: The U-Net neural network can achieve excellent results in the delineation of different cardiac structures of short-axis cardiac MRI. The high-quality segmentation allows for the correct measurement of left ventricular hyper-trabeculation and a definitive diagnosis of LVNC illness. Using this kind of solution could lead to more objective and faster analysis, reducing human error and time spent by cardiologists.


Asunto(s)
Cardiomiopatías , Aprendizaje Profundo , Corazón , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
3.
J Clin Med ; 10(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535420

RESUMEN

Left ventricular non-compaction (LVNC) is defined by an increase of trabeculations in left ventricular (LV) endomyocardium. Although LVNC can be in isolation, an increase in hypertrabeculation often accompanies genetic cardiomyopathies. Current methods for quantification of LV trabeculae have limitations. Several improvements are proposed and implemented to enhance a software tool to quantify the trabeculae degree in the LV myocardium in an accurate and automatic way for a population of patients with genetic cardiomyopathies (QLVTHCI). The software tool is developed and evaluated for a population of 59 patients (470 end-diastole cardiac magnetic resonance images). This tool produces volumes of the compact sector and the trabecular area, the proportion between these volumes, and the left ventricular and trabeculated masses. Substantial enhancements are obtained over the manual process performed by cardiologists, so saving important diagnosis time. The parallelization of the detection of the external layer is proposed to ensure real-time processing of a patient, obtaining speed-ups from 7.5 to 1500 with regard to QLVTHCI and the manual process used traditionally by cardiologists. Comparing the method proposed with the fractal proposal to differentiate LVNC and non-LVNC patients among 27 subjects with previously diagnosed cardiomyopathies, QLVTHCI presents a full diagnostic accuracy, while the fractal criteria achieve 78%. Moreover, QLTVHCI can be installed and integrated in hospitals on request, whereas the high cost of the license of the fractal method per year of this tool has prevented reproducibility by other medical centers.

4.
AMIA Annu Symp Proc ; 2020: 223-232, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33936394

RESUMEN

Left ventricular non-compaction (LVNC) is defined by an increase of trabeculations in left ventricular endo-myocardium. Although LVNC can be in isolation, an increase in hypertrabeculation often accompanies genetic cardiomyopthies. Several enhancements are proposed and implemented to improve a software tool for the automatic quantification of the exact hyper-trabeculation degree in the left ventricular myocardium for a population of patients with LVNC cardiomyopathy (QLVTHC-NC). The software tool is developed and evaluated for a population of 18 patients (133 cardiac images). An end-diastolic cardiac magnetic resonance images of the patients are the input of the software, whereas the left ventricular mass, volumes and proportion of trabeculation produced by the compacted zone and the trabeculated zone are the outputs. Significant improvements are obtained with respect to the manual process, so saving valuable diagnosis time. Comparing the method proposed with the fractal proposal to differentiate LVNC and non-LVNC patients in subjects with previously diagnosed LVNC cardiomyophaty, QLVTHC-NC presents higher diagnostic accuracy and lower complexity and cost than the fractal criterio.


Asunto(s)
Cardiomiopatías/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Corazón/diagnóstico por imagen , No Compactación Aislada del Miocardio Ventricular/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ventrículos Cardíacos/fisiopatología , Humanos , No Compactación Aislada del Miocardio Ventricular/diagnóstico , No Compactación Aislada del Miocardio Ventricular/patología , No Compactación Aislada del Miocardio Ventricular/fisiopatología , Masculino , Persona de Mediana Edad , Miocardio/patología , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...