Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38660806

RESUMEN

BACKGROUND: Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS: We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit ß5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit ß1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS: ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS: We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.

2.
J Physiol ; 602(9): 1939-1951, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606903

RESUMEN

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Asunto(s)
Aterosclerosis , Inflamación , Ratones Noqueados , Proteoglicanos , Receptores de LDL , Proteínas Recombinantes , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Femenino , Proteoglicanos/farmacología , Proteoglicanos/metabolismo , Proteoglicanos/genética , Receptores de LDL/genética , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/administración & dosificación , Ratones , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones Endogámicos C57BL , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células Espumosas/metabolismo , Células Espumosas/efectos de los fármacos
3.
Cardiovasc Res ; 119(15): 2508-2521, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37390467

RESUMEN

AIMS: Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans. METHODS AND RESULTS: Here, we show that aging promotes advanced atherosclerosis in chow diet-fed Ldlr-/- mice, with increased incidence of calcification and cholesterol crystals. We observed systemic immunosenescence, including myeloid skewing and T-cells with more extreme effector phenotypes. Using a combination of single-cell RNA-sequencing and flow cytometry on aortic leucocytes of young vs. aged Ldlr-/- mice, we show age-related shifts in expression of genes involved in atherogenic processes, such as cellular activation and cytokine production. We identified age-associated cells with pro-inflammatory features, including GzmK+CD8+ T-cells and previously in atherosclerosis undefined CD11b+CD11c+T-bet+ age-associated B-cells (ABCs). ABCs of Ldlr-/- mice showed high expression of genes involved in plasma cell differentiation, co-stimulation, and antigen presentation. In vitro studies supported that ABCs are highly potent antigen-presenting cells. In cardiovascular disease patients, we confirmed the presence of these age-associated T- and B-cells in atherosclerotic plaques and blood. CONCLUSIONS: Collectively, we are the first to provide comprehensive profiling of aged immunity in atherosclerotic mice and reveal the emergence of age-associated T- and B-cells in the atherosclerotic aorta. Further research into age-associated immunity may contribute to novel diagnostic and therapeutic tools to combat cardiovascular disease.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Ratones , Animales , Anciano , Enfermedades Cardiovasculares/complicaciones , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Leucocitos/metabolismo , Receptores de LDL/genética , Ratones Noqueados , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
4.
Vascul Pharmacol ; 150: 107172, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075932

RESUMEN

Atherosclerosis is characterized by the accumulation of lipids and immune cells, including mast cells and B cells, in the arterial wall. Mast cells contribute to atherosclerotic plaque growth and destabilization upon active degranulation. The FcεRI-IgE pathway is the most prominent mast cell activation route. Bruton's Tyrosine Kinase (BTK) is involved in FcεRI-signaling and may be a potential therapeutic target to limit mast cell activation in atherosclerosis. Additionally, BTK is crucial in B cell development and B-cell receptor signaling. In this project, we aimed to assess the effects of BTK inhibition on mast cell activation and B cell development in atherosclerosis. In human carotid artery plaques, we showed that BTK is primarily expressed on mast cells, B cells and myeloid cells. In vitro, BTK inhibitor Acalabrutinib dose-dependently inhibited IgE mediated activation of mouse bone marrow derived mast cells. In vivo, male Ldlr-/- mice were fed a high-fat diet for eight weeks, during which mice were treated with Acalabrutinib or control solvent. In Acalabrutinib treated mice, B cell maturation was reduced compared to control mice, showing a shift from follicular II towards follicular I B cells. Mast cell numbers and activation status were not affected. Acalabrutinib treatment did not affect atherosclerotic plaque size or morphology. In advanced atherosclerosis, where mice were first fed a high-fat diet for eight weeks before receiving treatment, similar effects were observed. Conclusively, BTK inhibition by Acalabrutinib alone did neither affect either mast cell activation nor early- and advanced atherosclerosis, despite the effects on follicular B cell maturation.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Masculino , Humanos , Animales , Agammaglobulinemia Tirosina Quinasa , Proteínas Tirosina Quinasas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Inmunoglobulina E
5.
Nat Cardiovasc Res ; 2(2): 112-125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665903

RESUMEN

Atherosclerosis is a lipid-driven chronic inflammatory disease; however, whether it can be classified as an autoimmune disease remains unclear. In this study, we applied single-cell T cell receptor seqencing (scTCR-seq) on human carotid artery plaques and matched peripheral blood mononuclear cell samples to assess the extent of TCR clonality and antigen-specific activation within the various T cell subsets. We observed the highest degree of plaque-specific clonal expansion in effector CD4+ T cells, and these clonally expanded T cells expressed genes such as CD69, FOS and FOSB, indicative of recent TCR engagement, suggesting antigen-specific stimulation. CellChat analysis suggested multiple potential interactions of these effector CD4+ T cells with foam cells. Finally, we integrated a published scTCR-seq dataset of the autoimmune disease psoriatic arthritis, and we report various commonalities between the two diseases. In conclusion, our data suggest that atherosclerosis has an autoimmune compondent driven by autoreactive CD4+ T cells.

6.
Front Cardiovasc Med ; 8: 740531, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790707

RESUMEN

Aim: Signaling through the coinhibitory programmed death (PD)-1/PD-L1 pathway regulates T cell responses and can inhibit ongoing immune responses. Inflammation is a key process in the development of atherosclerosis, the underlying cause for the majority of cardiovascular diseases. Dampening the excessive immune response that occurs during atherosclerosis progression by promoting PD-1/PD-L1 signaling may have a high therapeutic potential to limit disease burden. In this study we therefore aimed to assess whether an agonistic PD-1 antibody can diminish atherosclerosis development. Methods and Results: Ldlr-/- mice were fed a western-type diet (WTD) while receiving 100 µg of an agonistic PD-1 antibody or control vehicle twice a week. Stimulation of the PD-1 pathway delayed the WTD-induced monocyte increase in the circulation up to 3 weeks and reduced T cell activation and proliferation. CD4+ T cell numbers in the atherosclerotic plaque were reduced upon PD-1 treatment. More specifically, we observed a 23% decrease in atherogenic IFNγ-producing splenic CD4+ T cells and a 20% decrease in cytotoxic CD8+ T cells, whereas atheroprotective IL-10 producing CD4+ T cells were increased with 47%. Furthermore, we found an increase in regulatory B cells, B1 cells and associated atheroprotective circulating oxLDL-specific IgM levels in agonistic PD-1-treated mice. This dampened immune activation following agonistic PD-1 treatment resulted in reduced atherosclerosis development (p < 0.05). Conclusions: Our data show that stimulation of the coinhibitory PD-1 pathway inhibits atherosclerosis development by modulation of T- and B cell responses. These data support stimulation of coinhibitory pathways as a potential therapeutic strategy to combat atherosclerosis.

7.
Cardiovasc Res ; 116(2): 295-305, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31150053

RESUMEN

AIMS: The immune system is strongly involved in atherosclerosis and immune regulation generally leads to attenuated atherosclerosis. B- and T-lymphocyte attenuator (BTLA) is a novel co-receptor that negatively regulates the activation of B and T cells; however, there have been no reports of BTLA and its function in atherosclerosis or cardiovascular disease (CVD). We aimed to assess the dominant BTLA expressing leucocyte in CVD patients and to investigate whether BTLA has a functional role in experimental atherosclerosis. METHODS AND RESULTS: We show that BTLA is primarily expressed on B cells in CVD patients and follicular B2 cells in low-density lipoprotein receptor-deficient (Ldlr-/-) mice. We treated Ldlr-/- mice that were fed a western-type diet (WTD) with phosphate-buffered saline, an isotype antibody, or an agonistic BTLA antibody (3C10) for 6 weeks. We report here that the agonistic BTLA antibody significantly attenuated atherosclerosis. This was associated with a strong reduction in follicular B2 cells, while regulatory B and T cells were increased. The BTLA antibody showed similar immunomodulating effects in a progression study in which Ldlr-/- mice were fed a WTD for 10 weeks before receiving antibody treatment. Most importantly, BTLA stimulation enhanced collagen content, a feature of stable lesions, in pre-existing lesions. CONCLUSION: Stimulation of the BTLA pathway in Ldlr-/- mice reduces initial lesion development and increases collagen content of established lesions, presumably by shifting the balance between atherogenic follicular B cells and atheroprotective B cells and directing CD4+ T cells towards regulatory T cells. We provide the first evidence that BTLA is a very promising target for the treatment of atherosclerosis.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Aorta/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Linfocitos B/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Placa Aterosclerótica , Receptores Inmunológicos/agonistas , Animales , Aorta/inmunología , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B Reguladores/efectos de los fármacos , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Células Cultivadas , Colágeno/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Masculino , Ratones Noqueados , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Receptores de LDL/deficiencia , Receptores de LDL/genética , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA