Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202400834, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716700

RESUMEN

Ruthenium(II) polypyridyl complexes continue to raise increasing interest for the encouraging results in several biomedical areas. Considering their vast chemical-physical repertoire, in particular the possibility to switch from the sensitization of reactive oxygen species (ROS) to ROS-scavenging abilities by tuning the nature of their ligands, it is therefore surprising that their potential as antioxidants has not been largely investigated so far. Herein, we explored the antioxidant behaviour of the novel ruthenium compound [Ru(dbpy)(2,3-DAN)Cl]PF6 (Ru1), featuring a benzoxazole derivative (dpby = 2,6-bis(4-methyl-2-ossazolyl)pyridine) and the non-innocent 2,3-diamminonaftalene (2,3 DAN) ligand, along with the reference tpy-containing analogue [Ru(tpy)(2,3-DAN)Cl]PF6 (Ru2) (tpy = 2,2':6',2''-terpyridine). Following the synthesis and the electrochemical characterization, chemical antioxidant assays highlighted the beneficial role of dpby for the ROS-scavenging properties of Ru1. These data have been corroborated by the highest protective effect of Ru1 against the oxidative stress induced in SH-SY5Y human neuroblastoma, which exerts pro-survival and anti-inflammatory actions. The results herein reported highlight the potential of Ru1 as pharmacological tool in neurodegenerative diseases and specially prove that the antioxidant properties of such compounds are likely the result of a non-trivial synergetic action involving the bioactive ligands in their chemical architectures.

2.
FEBS J ; 291(8): 1744-1758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287231

RESUMEN

Endometriosis is a chronic gynecological syndrome characterized by endometrial cell invasion of the extra-uterine milieu, pelvic pain and infertility. Treatment relies on either symptomatic drugs or hormonal therapies, even though the mechanism involved in the onset of endometriosis is yet to be elucidated. The signaling of sphingolipid sphingosine 1-phosphate (S1P) is profoundly dysregulated in endometriosis. Indeed, sphingosine kinase (SK)1, one of the two isoenzymes responsible for S1P biosynthesis, and S1P1, S1P3 and S1P5, three of its five specific receptors, are more highly expressed in endometriotic lesions compared to healthy endometrium. Recently, missense coding variants of the gene encoding the receptor 1 for neuropeptide S (NPS) have been robustly associated with endometriosis in humans. This study aimed to characterize the biological effect of NPS in endometriotic epithelial cells and the possible involvement of the S1P signaling axis in its action. NPS was found to potently induce cell invasion and actin cytoskeletal remodeling. Of note, the NPS-induced invasive phenotype was dependent on SK1 and SK2 as well as on S1P1 and S1P3, given that the biological action of the neuropeptide was fully prevented when one of the two biosynthetic enzymes or one of the two selective receptors was inhibited or silenced. Furthermore, the RhoA/Rho kinase pathway, downstream to S1P receptor signaling, was found to be critically implicated in invasion and cytoskeletal remodeling elicited by NPS. These findings provide new information to the understanding of the molecular mechanisms implicated in endometriosis pathogenesis, establishing the rationale for non-hormonal therapeutic targets for its treatment.


Asunto(s)
Endometriosis , Receptores de Lisoesfingolípidos , Esfingosina , Femenino , Humanos , Endometriosis/genética , Lisofosfolípidos/metabolismo , Fenotipo , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/metabolismo , Esfingosina/análogos & derivados
3.
Fertil Steril ; 121(4): 631-641, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072366

RESUMEN

OBJECTIVE: To study the molecular mechanisms responsible for fibrosis in endometriosis by investigating whether the protein expression levels of sphingosine-1-phosphate receptor 3 (S1PR3), one of the five specific receptors of the bioactive sphingolipid sphingosine-1-phosphate (S1P), correlate with fibrosis extent in endometriotic lesions and which are the cellular mechanisms involved in this process. DESIGN: Case-control laboratory study and cultured endometriotic cells. SETTING: University research institute and university hospital. PATIENT(S): A total of 33 women, with and without endometriosis, were included in the study. INTERVENTIONS(S): Endometriotic lesions were obtained from women with endometriosis (ovarian endometrioma, n = 8; deep infiltrating endometriosis, n = 15; [urological n = 5, gastrointestinal n = 6, and posterior n = 4]) and control endometrium from healthy women, n = 10, by means of laparoscopic and hysteroscopic surgery. The expression of S1PR3 was evaluated using immunohistochemistry and the extent of fibrosis was assessed using Masson's trichrome staining. Human-cultured epithelial endometriotic 12Z cells were used to evaluate the mechanisms involved in the profibrotic effect of S1PR3 activation. MAIN OUTCOME MEASURE(S): The expression of S1PR3 in endometriotic lesions is positively correlated with endometriosis-associated fibrosis. In addition, S1P induced epithelial-mesenchymal transition (EMT) and fibrosis in epithelial endometriotic cells. Using RNA interference and pharmacological approaches, the profibrotic effect of S1P was shown to rely on S1PR3, thus unveiling the molecular mechanism implicated in the profibrotic action of the bioactive sphingolipid. RESULT(S): The protein expression levels of S1PR3 were significantly augmented in the glandular sections of endometrioma and deep infiltrating endometriosis of different localizations with respect to the control endometrium and positively correlated with the extent of fibrosis. Sphingosine-1-phosphate was shown to have a crucial role in the onset of fibrosis in epithelial endometriotic cells, stimulating the expression of EMT and fibrotic markers. Genetic approaches have highlighted that S1PR3 mediates the fibrotic effect of S1P. Downstream of S1PR3, ezrin and extracellular-signal-regulated kinases 1 and 2 signaling were found to be critically implicated in the EMT and fibrosis elicited by S1P. CONCLUSION(S): Sphingosine-1-phosphate receptor 3 may represent a possible innovative pharmacological target for endometriosis.


Asunto(s)
Endometriosis , Lisofosfolípidos , Esfingosina/análogos & derivados , Humanos , Femenino , Receptores de Esfingosina-1-Fosfato , Endometriosis/complicaciones , Endometriosis/genética , Endometriosis/metabolismo , Fibrosis , Esfingolípidos
4.
Life (Basel) ; 13(9)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37763216

RESUMEN

Adipokines are peptide hormones produced by the adipose tissue involved in several biological functions. Among adipokines, adiponectin (ADPN) has antidiabetic and anti-inflammatory properties. It can also modulate food intake at central and peripheral levels, acting on hypothalamus and facilitating gastric relaxation. ADPN exerts its action interacting with two distinct membrane receptors and triggering some well-defined signaling cascades. The ceramidase activity of ADPN receptor has been reported in many tissues: it converts ceramide into sphingosine. In turn, sphingosine kinase (SK) phosphorylates it into sphingosine-1 phosphate (S1P), a crucial mediator of many cellular processes including contractility. Using a multidisciplinary approach that combined biochemical, electrophysiological and morphological investigations, we explored for the first time the possible role of S1P metabolism in mediating ADPN effects on the murine gastric fundus muscle layer. By using a specific pharmacological inhibitor of SK2, we showed that ADPN affects smooth muscle cell membrane properties and contractile machinery via SK2 activation in gastric fundus, adding a piece of knowledge to the action mechanisms of this hormone. These findings help to identify ADPN and its receptors as new therapeutic targets or as possible prognostic markers for diseases with altered energy balance and for pathologies with fat mass content alterations.

5.
FASEB J ; 37(8): e23061, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37389926

RESUMEN

Endometriosis is a chronic gynecological disease affecting ~10% women in the reproductive age characterized by the growth of endometrial glands and stroma outside the uterine cavity. The inflammatory process has a key role in the initiation and progression of the disorder. Currently, there are no available early diagnostic tests and therapy relies exclusively on symptomatic drugs, so that elucidation of the complex molecular mechanisms involved in the pathogenesis of endometriosis is an unmet need. The signaling of the bioactive sphingolipid sphingosine 1-phosphate (S1P) is deeply dysregulated in endometriosis. S1P modulates a variety of fundamental cellular processes, including inflammation, neo-angiogenesis, and immune responses acting mainly as ligand of a family of G-protein-coupled receptors named S1P receptors (S1PR), S1P1-5 . Here, we demonstrated that the mitogen-activated protein kinase ERK5, that is expressed in endometriotic lesions as determined by quantitative PCR, is activated by S1P in human endometrial stromal cells. S1P-induced ERK5 activation was shown to be triggered by S1P1/3 receptors via a SFK/MEK5-dependent axis. S1P-induced ERK5 activation was, in turn, responsible for the increase of reactive oxygen species and proinflammatory cytokine expression in human endometrial stromal cells. The present findings indicate that the S1P signaling, via ERK5 activation, supports a proinflammatory response in the endometrium and establish the rationale for the exploitation of innovative therapeutic targets for endometriosis.


Asunto(s)
Endometriosis , Humanos , Femenino , Masculino , Especies Reactivas de Oxígeno , Esfingosina , Esfingolípidos
6.
Reprod Biomed Online ; 47(1): 15-25, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37137790

RESUMEN

RESEARCH QUESTION: Is the hypusinated form of the eukaryotic translation initiation factor 5A (EIF5A) present in human myometrium, leiomyoma and leiomyosarcoma, and does it regulate cell proliferation and fibrosis? DESIGN: The hypusination status of eIF5A in myometrial and leiomyoma patient-matched tissues was evaluated by immunohistochemistry and Western blotting as well as in leiomyosarcoma tissues by immunohistochemistry. Myometrial, leiomyoma and leiomyosarcoma cell lines were treated with N1-guanyl-1,7-diaminoheptane (GC-7), responsible for the inhibition of the first step of eIF5A hypunization, and the proliferation rate was determined by MTT assay; fibronectin expression was analysed by Western blotting. Finally, expression of fibronectin in leiomyosarcoma tissues was detected by immunohistochemistry. RESULTS: The hypusinated form of eIF5A was present in all tissues examined, with an increasing trend of hypusinated eIF5A levels from normal myometrium to neoplastic benign leiomyoma up to neoplastic malignant leiomyosarcoma. The higher levels in leiomyoma compared with myometrium were confirmed by Western blotting (P = 0.0046). The inhibition of eIF5A hypusination, with GC-7 treatment at 100 nM, reduced the cell proliferation in myometrium (P = 0.0429), leiomyoma (P = 0.0030) and leiomyosarcoma (P = 0.0044) cell lines and reduced the expression of fibronectin in leiomyoma (P = 0.0077) and leiomyosarcoma (P = 0.0280) cells. The immunohistochemical staining of leiomyosarcoma tissue revealed that fibronectin was highly expressed in the malignant aggressive (central) part of the leiomyosarcoma lesion, where hypusinated eIF5A was also highly represented. CONCLUSIONS: These data support the hypothesis that eIF5A may be involved in the pathogenesis of myometrial benign and malignant pathologies.


Asunto(s)
Leiomioma , Leiomiosarcoma , Neoplasias Uterinas , Femenino , Humanos , Fibronectinas/metabolismo , Leiomiosarcoma/metabolismo , Leiomiosarcoma/patología , Leiomioma/patología , Proliferación Celular , Miometrio/metabolismo , Neoplasias Uterinas/patología , Factor 5A Eucariótico de Iniciación de Traducción
7.
Reprod Sci ; 30(5): 1453-1461, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36289173

RESUMEN

Endometriosis is a chronic inflammatory condition affecting women of reproductive age. A relevant feature of endometriosis is the presence of fibrotic tissue inside and around the lesions, thus contributing to the classic endometriosis-related symptoms, pain, and infertility. The molecular mechanisms responsible for the development of fibrosis in endometriosis are not yet defined. The present review aimed to examine the biological mechanisms and signalling pathways involved in fibrogenesis of endometriotic lesions, highlighting the difference between deep infiltrating and ovarian endometriosis. The main cell types involved in the development of fibrosis are platelets, myofibroblasts, macrophages, and sensory nerve fibers. Members of the transforming growth factor (TGF) -ß family, as well as the receptor Notch, or the bioactive sphingolipid sphingosine 1-phosphate (S1P), play a role in the development of tissue fibrosis, resulting in their metabolism and/or their signalling pathways altered in endometriotic lesions. It is relevant the knowledge of the molecular mechanisms that guide and support fibrosis in endometriosis, to identify new drug targets and provide new therapeutic approaches to patients.


Asunto(s)
Endometriosis , Humanos , Femenino , Endometriosis/metabolismo , Transducción de Señal/fisiología , Miofibroblastos/metabolismo , Plaquetas , Factor de Crecimiento Transformador beta , Fibrosis
8.
J Nutr Biochem ; 113: 109247, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36496062

RESUMEN

To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Ratas , Animales , Fructosa/efectos adversos , Fructosa/metabolismo , Dieta , Tejido Adiposo/metabolismo , Insulina/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo
9.
FEBS J ; 290(1): 112-133, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35851748

RESUMEN

Soluble oligomers arising from the aggregation of the amyloid beta peptide (Aß) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Prefibrillar oligomers of the 42-residue form of Aß (Aß42 O) show membrane-binding capacity and trigger the disruption of Ca2+ homeostasis, a causative event in neuron degeneration. Since bioactive lipids have been recently proposed as potent protective agents against Aß toxicity, we investigated the involvement of sphingosine 1-phosphate (S1P) signalling pathway in Ca2+ homeostasis in living neurons exposed to Aß42 O. We show that both exogenous and endogenous S1P rescued neuronal Ca2+ dyshomeostasis induced by toxic Aß42 O in primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Further analysis revealed a strong neuroprotective effect of S1P1 and S1P4 receptors, and to a lower extent of S1P3 and S1P5 receptors, which activate the Gi -dependent signalling pathways, thus resulting in the endocytic internalization of the extrasynaptic GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). Notably, the S1P beneficial effect can be sustained over time by sphingosine kinase-1 overexpression, thus counteracting the down-regulation of the S1P signalling induced by Aß42 O. Our findings disclose underlying mechanisms of S1P neuronal protection against harmful Aß42 O, suggesting that S1P and its signalling axis can be considered promising targets for therapeutic approaches for AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Ratas , Humanos , Animales , Receptores de N-Metil-D-Aspartato/genética , Péptidos beta-Amiloides/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo
10.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232401

RESUMEN

The sphingosine 1-phosphate (S1P) and endocannabinoid (ECS) systems comprehend bioactive lipids widely involved in the regulation of similar biological processes. Interactions between S1P and ECS have not been so far investigated in skeletal muscle, where both systems are active. Here, we used murine C2C12 myoblasts to investigate the effects of S1P on ECS elements by qRT-PCR, Western blotting and UHPLC-MS. In addition, the modulation of the mitochondrial membrane potential (ΔΨm), by JC-1 and Mitotracker Red CMX-Ros fluorescent dyes, as well as levels of protein controlling mitochondrial function, along with the oxygen consumption were assessed, by Western blotting and respirometry, respectively, after cell treatment with methanandamide (mAEA) and in the presence of S1P or antagonists to endocannabinoid-binding receptors. S1P induced a significant increase in TRPV1 expression both at mRNA and protein level, while it reduced the protein content of CB2. A dose-dependent effect of mAEA on ΔΨm, mediated by TRPV1, was evidenced; in particular, low doses were responsible for increased ΔΨm, whereas a high dose negatively modulated ΔΨm and cell survival. Moreover, mAEA-induced hyperpolarization was counteracted by S1P. These findings open new dimension to S1P and endocannabinoids cross-talk in skeletal muscle, identifying TRPV1 as a pivotal target.


Asunto(s)
Endocannabinoides , Colorantes Fluorescentes , Animales , Ácidos Araquidónicos , Línea Celular , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Colorantes Fluorescentes/metabolismo , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Ratones , Mitocondrias/metabolismo , Mioblastos/metabolismo , Alcamidas Poliinsaturadas , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
11.
Reprod Biomed Online ; 45(1): 15-18, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35562234

RESUMEN

RESEARCH QUESTION: Is sphingosine 1-phosphate (S1P) pathway involved in the process of fibrosis in adenomyosis? DESIGN: RNA was extracted from paraffin-embedded slices collected from the ectopic endometrium of patients with nodular adenomyosis (n = 27) and eutopic endometrium of healthy controls women (n = 29). Expression of genes involved in the metabolism and signalling of S1P, and actin-alpha-2 smooth muscle, encoded by ACTA2 gene, a gene involved in fibrogenesis, was evaluated by real-time polymerase chain reaction analysis. RESULTS: In adenomyotic samples, the expression of sphingosine kinase 1 (SPHK1), the enzyme responsible for the synthesis of S1P, and of S1P phosphatase 2 (SGPP2), the enzyme responsible for the conversion of S1P back to sphingosine, was lower (P = 0.0006; P = 0.0015), whereas that of calcium and integrin-binding protein 1, responsible for membrane translocation of SPHK1, was higher (P = 0.0001) compared with healthy controls. In S1P signalling, a higher expression of S1P receptor S1P3 (P = 0.001), and a lower expression of S1P2 (P = 0.0019) mRNA levels, were found compared with healthy endometrium. In adenomyotic nodules, a higher expression of ACTA2 mRNA levels were observed (P = 0.0001), which correlated with S1P3 levels (P = 0.0138). CONCLUSION: Present data show a profound dysregulation of the S1P signalling axis in adenomyosis. This study also highlights that the bioactive sphingolipid might be involved in the fibrotic tract of the disease, correlated with the expression of ACTA2, suggesting its role as novel potential biomarker of adenomyosis.


Asunto(s)
Adenomiosis , Esfingosina , Adenomiosis/genética , Adenomiosis/metabolismo , Femenino , Fibrosis , Humanos , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , ARN Mensajero , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo
12.
Cells ; 11(4)2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35203362

RESUMEN

BACKGROUND: Adiponectin (Adn), released by adipocytes and other cell types such as skeletal muscle, has insulin-sensitizing and anti-inflammatory properties. Sphingosine 1-phosphate (S1P) is reported to act as effector of diverse biological actions of Adn in different tissues. S1P is a bioactive sphingolipid synthesized by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK) 1 and 2. Consolidated findings support the key role of S1P in the biology of skeletal muscle. METHODS AND RESULTS: Here we provide experimental evidence that S1P signalling is modulated by globular Adn treatment being able to increase the phosphorylation of SK1/2 as well as the mRNA expression levels of S1P4 in C2C12 myotubes. These findings were confirmed by LC-MS/MS that showed an increase of S1P levels after Adn treatment. Notably, the involvement of S1P axis in Adn action was highlighted since, when SK1 and 2 were inhibited by PF543 and ABC294640 inhibitors, respectively, not only the electrophysiological changes but also the increase of oxygen consumption and of aminoacid levels induced by the hormone, were significantly inhibited. CONCLUSION: Altogether, these findings show that S1P biosynthesis is necessary for the electrophysiological properties and oxidative metabolism of Adn in skeletal muscle cells.


Asunto(s)
Adiponectina , Lisofosfolípidos , Fibras Musculares Esqueléticas , Esfingosina , Adiponectina/metabolismo , Animales , Línea Celular , Cromatografía Liquida , Lisofosfolípidos/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Estrés Oxidativo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometría de Masas en Tándem
13.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445567

RESUMEN

S1P is the final product of sphingolipid metabolism, which interacts with five widely expressed GPCRs (S1P1-5). Increasing numbers of studies have indicated the importance of S1P3 in various pathophysiological processes. Recently, we have identified a pepducin (compound KRX-725-II) acting as an S1P3 receptor antagonist. Here, aiming to optimize the activity and selectivity profile of the described compound, we have synthesized a series of derivatives in which Tyr, in position 4, has been substituted with several natural aromatic and unnatural aromatic and non-aromatic amino acids. All the compounds were evaluated for their ability to inhibit vascular relaxation induced by KRX-725 (as S1P3 selective pepducin agonist) and KRX-722 (an S1P1-selective pepducin agonist). Those selective towards S1P3 (compounds V and VII) were also evaluated for their ability to inhibit skeletal muscle fibrosis. Finally, molecular dynamics simulations were performed to derive information on the preferred conformations of selective and unselective antagonists.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Fibrosis/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/tratamiento farmacológico , Mioblastos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Animales , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mioblastos/metabolismo , Mioblastos/patología , Receptores de Lisoesfingolípidos
14.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525436

RESUMEN

Skeletal muscle atrophy is characterized by a decrease in muscle mass causing reduced agility, increased fatigability and higher risk of bone fractures. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), are strong inducers of skeletal muscle atrophy. The bioactive sphingolipid sphingosine 1-phoshate (S1P) plays an important role in skeletal muscle biology. S1P, generated by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK1/2), exerts most of its actions through its specific receptors, S1P1-5. Here, we provide experimental evidence that TNFα induces atrophy and autophagy in skeletal muscle C2C12 myotubes, modulating the expression of specific markers and both active and passive membrane electrophysiological properties. NMR-metabolomics provided a clear picture of the deep remodelling of skeletal muscle fibre metabolism induced by TNFα challenge. The cytokine is responsible for the modulation of S1P signalling axis, upregulating mRNA levels of S1P2 and S1P3 and downregulating those of SK2. TNFα increases the phosphorylated form of SK1, readout of its activation. Interestingly, pharmacological inhibition of SK1 and specific antagonism of S1P3 prevented the increase in autophagy markers and the changes in the electrophysiological properties of C2C12 myotubes without affecting metabolic remodelling induced by the cytokine, highlighting the involvement of S1P signalling axis on TNFα-induced atrophy in skeletal muscle.


Asunto(s)
Lisofosfolípidos/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptores de Esfingosina-1-Fosfato/genética , Esfingosina/análogos & derivados , Factor de Necrosis Tumoral alfa/farmacología , Animales , Diferenciación Celular , Línea Celular , Regulación de la Expresión Génica , Humanos , Metabolómica/métodos , Ratones , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mioblastos/metabolismo , Mioblastos/patología , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
Fertil Steril ; 115(6): 1576-1585, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33500141

RESUMEN

OBJECTIVE: To explore the link between sphingosine 1-phosphate (S1P) signaling and leiomyoma and the possible S1P cross-talk with the fibrotic effect of activin A. DESIGN: Case-control laboratory study. SETTING: University institute and university hospital. PATIENT(S): Patients with uterine fibroids (n = 26). INTERVENTIONS(S): Tissue specimens of leiomyoma and normal myometrium were obtained from patients undergoing myomectomy or total hysterectomy. MAIN OUTCOME MEASURE(S): Expression of mRNA levels of the enzyme involved in S1P metabolism, S1P receptors, and S1P transporter Spns2 was evaluated in matched leiomyoma/myometrium specimens and cell populations. The effects of inhibition of S1P metabolism and signaling was evaluated on activin A-induced fibrotic action in leiomyoma cell lines. RESULT(S): The expression of the enzymes responsible for S1P formation, sphingosine kinase (SK) 1 and 2, and S1P2, S1P3, and S1P5 receptors was significantly augmented in leiomyomas compared with adjacent myometrium. In leiomyoma cells, but not in myometrial cells, activin A increased mRNA expression levels of SK1, SK2, and S1P2. The profibrotic action of activin A was abolished when SK1/2 were inhibited or S1P2/3 were blocked. Finally, S1P augmented by itself mRNA levels of fibrotic markers (fibronectin, collagen 1A1) and activin A in leiomyomas but not in myometrial cells. CONCLUSION(S): This study shows that S1P signaling is dysregulated in uterine fibroids and involved in activin A-induced fibrosis, opening new perspectives for uterine fibroid treatment.


Asunto(s)
Activinas/metabolismo , Leiomioma/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Neoplasias Uterinas/metabolismo , Adulto , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Fibrosis , Humanos , Leiomioma/genética , Leiomioma/patología , Persona de Mediana Edad , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología
16.
Fertil Steril ; 115(2): 501-511, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32907751

RESUMEN

OBJECTIVE: To study the molecular mechanisms involved in the appearance of the fibrotic trait in endometriosis by investigating whether the signaling pathway of the bioactive sphingolipid sphingosine 1-phosphate (S1P) was altered in endometriotic lesions. DESIGN: Case-control laboratory study. SETTING: University research institute and university hospital. PATIENT(S): A total of 75 women, with and without endometriosis, were included in the study. INTERVENTIONS(S): Endometrial samples were obtained from women affected (n = 15 endometrioma [OMA]; n = 30 deep infiltrating endometriosis [DIE]) and not (n = 30) by endometriosis by means of laparoscopic surgery, followed by clinical and imaging investigation and checking for the expression of fibrosis markers and genes implicated in S1P metabolism and signaling by means of real-time polymerase chain reaction. MAIN OUTCOME MEASURE(S): The role of the S1P signaling axis in endometriosis-associated fibrosis was studied in vitro, where RNA interference approaches were used to investigate if S1P synthesis by sphingosine kinases (SKs) and specific S1P receptors (S1PRs) are implicated in the profibrotic effect of the cytokine transforming growth factor (TGF) ß1. RESULT(S): mRNA expression analysis of S1PR demonstrated a deep dysregulation of S1P signaling in endometriosis, characterized by increased expression of fibrosis markers: S1P1 was transcriptionally more expressed in OMA, and S1P3 and S1P5 mRNA levels were significantly augmented in both OMA and DIE. SK1 and its activating protein calcium- and integrin-binding protein 1 (CIB1) were significantly up-regulated in OMA and DIE. A crucial role for the SK/S1PR axis in the profibrotic effect elicited by TGFß1 was highlighted in vitro. CONCLUSION(S): The S1P signaling axis may represent a useful biomarker or innovative pharmacologic target for endometriosis.


Asunto(s)
Endometriosis/metabolismo , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Receptores de Esfingosina-1-Fosfato/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endometriosis/patología , Femenino , Fibrosis , Células HeLa , Humanos , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
17.
Cell Signal ; 78: 109861, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253915

RESUMEN

Fibrosis is characterized by the excessive accumulation of extracellular matrix components, leading to loss of tissue function in affected organs. Although the majority of fibrotic diseases have different origins, they have in common a persistent inflammatory stimulus and lymphocyte-monocyte interactions that determine the production of numerous fibrogenic cytokines. Treatment to contrast fibrosis is urgently needed, since some fibrotic diseases lead to systemic fibrosis and represent a major cause of death. In this article, the role of the bioactive sphingolipid sphingosine 1-phosphate (S1P) and its signalling pathway in the fibrosis of different tissue contexts is extensively reviewed, highlighting that it may represent an innovative and promising pharmacological therapeutic target for treating this devastating multifaceted disease. In multiple tissues S1P influences different aspects of fibrosis modulating the recruitment of inflammatory cells, as well as cell proliferation, migration and transdifferentiation into myofibroblasts, the cell type mainly involved in fibrosis development. Moreover, at the level of fibrotic lesions, S1P metabolism is profoundly influenced by multiple cross-talk with profibrotic mediators, such as transforming growth factor ß, thus finely regulating the development of fibrosis. This article is part of a Special Issue entitled "Physiological and pathological roles of bioactive sphingolipids".


Asunto(s)
Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Animales , Fibrosis , Humanos , Inflamación/genética , Inflamación/metabolismo , Lisofosfolípidos/genética , Esfingosina/genética , Esfingosina/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-32565314

RESUMEN

The bioactive sphingolipid sphingosine 1-phosphate (S1P) has emerged in the last three decades as main regulator of key cellular processes including cell proliferation, survival, migration and differentiation. A crucial role for this sphingolipid has been recognized in skeletal muscle cell biology both in vitro and in vivo. S1P lyase (SPL) is responsible for the irreversible degradation of S1P and together with sphingosine kinases, the S1P producing enzymes, regulates cellular S1P levels. In this study is clearly showed that the blockade of SPL by pharmacological or RNA interference approaches induces myogenic differentiation of C2C12 myoblasts. Moreover, down-regulation of the specific S1P transporter spinster homolog 2 (Spns2) abrogates myogenic differentiation brought about by SPL inhibition or down-regulation, pointing at a role of extracellular S1P in the pro-myogenic action induced by SPL blockade. Furthermore, also S1P2 receptor down-regulation was found to abrogate the pro-myogenic effect of SPL blockade. These results provide further proof that inside-out S1P signaling is critically implicated in skeletal muscle biology and provide support to the concept that the specific targeting of SPL could represent an exploitable strategy to treat skeletal muscle disorders.


Asunto(s)
Aldehído-Liasas/metabolismo , Proteínas de Transporte de Anión/metabolismo , Diferenciación Celular , Mioblastos/citología , Receptores de Esfingosina-1-Fosfato/metabolismo , Aldehído-Liasas/antagonistas & inhibidores , Animales , Proteínas de Transporte de Anión/genética , Línea Celular , Ratones , Receptores de Esfingosina-1-Fosfato/genética
19.
Biochem Pharmacol ; 177: 113956, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32251679

RESUMEN

Oligodendrocytes are the only myelinating cells in the brain and differentiate from their progenitors (OPCs) throughout adult life. However, this process fails in demyelinating pathologies. Adenosine is emerging as an important player in OPC differentiation and we recently demonstrated that adenosine A2A receptors inhibit cell maturation by reducing voltage-dependent K+ currents. No data are available to date about the A2B receptor (A2BR) subtype. The bioactive lipid mediator sphingosine-1-phosphate (S1P) and its receptors (S1P1-5) are also crucial modulators of OPC development. An interaction between this pathway and the A2BR is reported in peripheral cells. We studied the role of A2BRs in modulating K+ currents and cell differentiation in OPC cultures and we investigated a possible interplay with S1P signaling. Our data indicate that the A2BR agonist BAY60-6583 and its new analogue P453 inhibit K+ currents in cultured OPC and the effect was prevented by the A2BR antagonist MRS1706, by K+ channel blockers and was differently modulated by the S1P analogue FTY720-P. An acute (10 min) exposure of OPCs to BAY60-6583 also increased the phosphorylated form of sphingosine kinase 1 (SphK1). A chronic (7 days) treatment with the same agonist decreased OPC differentiation whereas SphK1/2 inhibition exerted the opposite effect. Furthermore, A2BR was overexpressed during OPC differentiation, an effect prevented by the pan SphK1/2 inhibitor VPC69047. Finally, A2BR silenced cells showed increased cell maturation, decreased SphK1 expression and enhanced S1P lyase levels. We conclude that A2BRs inhibit K+ currents and cell differentiation and positively modulate S1P synthesis in cultured OPCs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Lisofosfolípidos/farmacología , Células Precursoras de Oligodendrocitos/metabolismo , Canales de Potasio/metabolismo , Receptor de Adenosina A2B/metabolismo , Esfingosina/análogos & derivados , Aminopiridinas/farmacología , Animales , Células Cultivadas , Humanos , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Organofosfatos/farmacología , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Purinas/farmacología , Interferencia de ARN , Ratas Wistar , Receptor de Adenosina A2B/genética , Transducción de Señal/efectos de los fármacos , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato/metabolismo
20.
Biochim Biophys Acta Mol Cell Res ; 1866(4): 554-565, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30611767

RESUMEN

Hearing loss is among the most prevalent sensory impairments in humans. Cochlear implantable devices represent the current therapies for hearing loss but have various shortcomings. ERM (ezrin- radixin -moesin) are a family of adaptor proteins that link plasma membrane with actin cytoskeleton, playing a crucial role in cell morphology and in the formation of membrane protrusions. Recently, bioactive sphingolipids have emerged as regulators of ERM proteins. Sphingosine 1-phosphate (S1P) is a pleiotropic sphingolipid which regulates fundamental cellular functions such as proliferation, survival, migration as well as processes such as development and inflammation mainly via ligation to its specific receptors S1PR (S1P1-5). Experimental findings demonstrate a key role for S1P signaling axis in the maintenance of auditory function. Preservation of cellular junctions is a fundamental function both for S1P and ERM proteins, crucial for the maintenance of cochlear integrity. In the present work, S1P was found to activate ERM in a S1P2-dependent manner in murine auditory epithelial progenitors US/VOT-E36. S1P-induced ERM activation potently contributed to actin cytoskeletal remodeling and to the appearance of ionic currents and membrane passive properties changes typical of more differentiated cells. Moreover, PKC and Akt activation was found to mediate S1P-induced ERM phosphorylation. The obtained findings contribute to demonstrate the role of S1P signaling pathway in inner ear biology and to disclose potential innovative therapeutical approaches in the field of hearing loss prevention and treatment.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cóclea/citología , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/fisiología , Lisofosfolípidos/fisiología , Esfingosina/análogos & derivados , Animales , Línea Celular , Membrana Celular/fisiología , Fenómenos Electrofisiológicos , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/fisiología , Receptores de Esfingosina-1-Fosfato , Células Madre/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA