Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739549

RESUMEN

The pinfish (Lagodon rhomboides) is an ecologically, economically, and culturally relevant member of family Sparidae, playing crucial roles in marine food webs of the western Atlantic Ocean and Gulf of Mexico. Despite their high abundance and ecological importance, there is a scarcity of genomic resources for this species. We assembled and annotated a chromosome-scale genome for the pinfish, resulting in a highly contiguous 785 Mb assembly of 24 scaffolded chromosomes. The high-quality assembly contains 98.9% complete BUSCOs and shows strong synteny to other chromosome-scale genomes of fish in the family Sparidae, with a limited number of large-scale genomic rearrangements. Leveraging this new genomic resource, we found evidence of significant expansions of dietary gene families over the evolutionary history of the pinfish, which may be associated with an ontogenetic shift from carnivory to herbivory seen in this species. Estimates of historical patterns of population demography using this new reference genome identified several periods of population growth and contraction which were associated with ancient climatic shifts and sea level changes. This genome serves as a valuable reference for future studies of population genomics and differentiation and provides a much-needed genomic resource for this western Atlantic sparid.

2.
Proc Biol Sci ; 291(2023): 20240149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38808447

RESUMEN

Developing robust professional networks can help shape the trajectories of early career scientists. Yet, historical inequities in science, technology, engineering, and mathematics (STEM) fields make access to these networks highly variable across academic programmes, and senior academics often have little time for mentoring. Here, we illustrate the success of a virtual Laboratory Meeting Programme (LaMP). In this programme, we matched students (mentees) with a more experienced scientist (mentors) from a research group. The mentees then attended the mentors' laboratory meetings during the academic year with two laboratory meetings specifically dedicated to the mentee's professional development. Survey results indicate that mentees expanded their knowledge of the hidden curriculum as well as their professional network, while only requiring a few extra hours of their mentor's time over eight months. In addition, host laboratories benefitted from mentees sharing new perspectives and knowledge in laboratory meetings. Diversity of the mentees was significantly higher than the mentors, suggesting that the programme increased the participation of traditionally under-represented groups. Finally, we found that providing a stipend was very important to many mentees. We conclude that virtual LaMPs can be an inclusive and cost-effective way to foster trainee development and increase diversity within STEM fields with little additional time commitment.


Asunto(s)
Ingeniería , Mentores , Ciencia , Tecnología , Ingeniería/educación , Humanos , Ciencia/educación , Laboratorios , Matemática , Tutoría
3.
J Hered ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651326

RESUMEN

Sea surface temperatures are rising at unprecedented rates, leading to a progressive degradation of complex habitats formed by coral reefs. In parallel, acute thermal stress can lead to physiological challenges for ectotherms that inhabit coral reefs, including fishes. Warming and habitat simplification could push marine fishes beyond their physiological limits in the near future. Specifically, questions remain on how warming and habitat structure influence the brain of marine fishes. Here we evaluated how thermal stress and habitat loss are acting independently and synergistically as stressors in a damselfish of the Western Atlantic, Abudefduf saxatilis. For this experiment, 40 individuals were exposed to different combinations of temperature (27°C or 31°C) and habitat complexity (complex vs simple) for 10 days, and changes in brain gene expression and oxidative stress of liver and muscle were evaluated. The results indicate that warming resulted in increased oxidative damage in the liver (p=0.007) and changes in gene expression of the brain including genes associated with neurotransmission, immune function, and tissue repair. Individuals from simplified habitats showed higher numbers of differentially expressed genes, and changes for genes associated with synaptic plasticity and spatial memory. In addition, a reference transcriptome of A. saxatilis is presented here for the first time, serving as a resource for future molecular studies. This project enhances our understanding of how fishes are responding to the combination of coral reef degradation and thermal stress, while elucidating the plastic mechanisms that will enable generalists to persist in a changing world.

4.
Mar Genomics ; 67: 101005, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36682851

RESUMEN

Transcriptomes are appropriate resources for studying species that lack sequenced genomes, as they can serve as references for a broad suite of genetic applications, including: phylogenetic assessments, population genomics, and evaluate responses to environmental fluctuations. Here, we present the transcriptomes of two species of marine fishes of commercial and ecological relevance in the Western Atlantic: Lutjanus griseus and L. synagris. This project represents a step forward on developing genomic resources for important species of the Atlantic Ocean.


Asunto(s)
Perciformes , Transcriptoma , Animales , Filogenia , Perciformes/genética , Peces/genética , Océano Atlántico
5.
Hum Genomics ; 16(1): 56, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369063

RESUMEN

Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.


Asunto(s)
Evolución Molecular , Genómica , Animales , Humanos , Genoma , Secuencia de Bases , Filogenia
6.
Proc Natl Acad Sci U S A ; 119(34): e2122667119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35972961

RESUMEN

Field biology is an area of research that involves working directly with living organisms in situ through a practice known as "fieldwork." Conducting fieldwork often requires complex logistical planning within multiregional or multinational teams, interacting with local communities at field sites, and collaborative research led by one or a few of the core team members. However, existing power imbalances stemming from geopolitical history, discrimination, and professional position, among other factors, perpetuate inequities when conducting these research endeavors. After reflecting on our own research programs, we propose four general principles to guide equitable, inclusive, ethical, and safe practices in field biology: be collaborative, be respectful, be legal, and be safe. Although many biologists already structure their field programs around these principles or similar values, executing equitable research practices can prove challenging and requires careful consideration, especially by those in positions with relatively greater privilege. Based on experiences and input from a diverse group of global collaborators, we provide suggestions for action-oriented approaches to make field biology more equitable, with particular attention to how those with greater privilege can contribute. While we acknowledge that not all suggestions will be applicable to every institution or program, we hope that they will generate discussions and provide a baseline for training in proactive, equitable fieldwork practices.


Asunto(s)
Discusiones Bioéticas , Biología , Biología/ética , Humanos
7.
Mol Ecol ; 31(17): 4495-4509, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35785504

RESUMEN

Groups of sympatric taxa with low interspecific genetic differentiation, but considerable ecological differences, offer great opportunities to study the dynamics of divergence and speciation. This is the case of ciscoes (Coregonus spp.) in the Laurentian Great Lakes, which are characterized by a complex evolutionary history and are commonly described as having undergone an adaptive radiation. In this study, morphometrics, stable isotopes and transcriptome sequencing were used to study the relationships within the Coregonus artedi complex in western Lake Superior. We observed general concordance for morphological, ecological and genomic variation, but the last was more taxonomically informative as it showed less overlap among species in multivariate space. Low levels of genetic differentiation were observed between individuals morphologically identified as Coregonus hoyi and C. zenithicus, which could be evidence of incomplete lineage sorting or recent hybridization between the two groups. Transcriptome-based single nucleotide polymorphisms exhibited significant divergence for genes associated with vision, development, metabolism and immunity among species that occupy different habitats. This study highlights the importance of using an integrative approach when studying groups of taxa with a complex evolutionary history, as individual-level analyses of multiple independent data sets can provide a clearer picture of the patterns and processes associated with the origins of biodiversity.


Asunto(s)
Variación Genética , Salmonidae , Animales , Especiación Genética , Isótopos , Lagos , Salmonidae/genética , Simpatría
8.
Evol Appl ; 15(2): 249-261, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35233246

RESUMEN

Global warming is expected to drive some ectothermic species beyond their thermal tolerance in upcoming decades. Phenotypic plasticity, via developmental or transgenerational acclimation, is a critical mechanism for compensation in the face of environmental change. Yet, it remains to be determined if the activation of beneficial phenotypes requires direct exposure throughout development, or if compensation can be obtained just through the experience of previous generations. In this study, we exposed three generations of a tropical damselfish to combinations of current-day (Control) and projected future (+1.5°C) water temperatures. Acclimation was evaluated with phenotypic (oxygen consumption, hepatosomatic index, physical condition) and molecular (liver gene expression) measurements of third-generation juveniles. Exposure of grandparents/parents to warm conditions improved the aerobic capacity of fish regardless of thermal conditions experienced afterwards, representing a true transgenerational effect. This coincided with patterns of gene expression related to inflammation and immunity seen in the third generation. Parental effects due to reproductive temperature significantly affected the physical condition and routine metabolic rate (oxygen consumption) of offspring, but had little impact on gene expression of the F3. Developmental temperature of juveniles, and whether they matched conditions during parental reproduction, had the largest influence on the liver transcriptional program. Using a combination of both phenotypic and molecular approaches, this study highlights how the conditions experienced by both previous and current generations can influence plasticity to global warming in upcoming decades.

9.
Ecol Evol ; 12(3): e8738, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342554

RESUMEN

Alternative splicing is a molecular mechanism that enables a single gene to encode multiple transcripts and proteins by post-transcriptional modification of pre-RNA molecules. Changes in the splicing scheme of genes can lead to modifications of the transcriptome and the proteome. This mechanism can enable organisms to respond to environmental fluctuations. In this study, we investigated patterns of alternative splicing in the liver of the coral reef fish Acanthochromis polyacanthus in response to the 2016 marine heatwave on the Great Barrier Reef. The differentially spliced (DS; n = 40) genes during the onset of the heatwave (i.e., 29.49°C or +1°C from average) were related to essential cellular functions such as the MAPK signaling system, Ca(2+) binding, and homeostasis. With the persistence of the heatwave for a period of one month (February to March), 21 DS genes were detected, suggesting that acute warming during the onset of the heatwave is more influential on alternative splicing than the continued exposure to elevated temperatures. After the heatwave, the water temperature cooled to ~24.96°C, and fish showed differential splicing of genes related to cyto-protection and post-damage recovery (n = 26). Two-thirds of the DS genes detected across the heatwave were also differentially expressed, revealing that the two molecular mechanisms act together in A. polyacanthus to cope with the acute thermal change. This study exemplifies how splicing patterns of a coral reef fish can be modified by marine heatwaves. Alternative splicing could therefore be a potential mechanism to adjust cellular physiological states under thermal stress and aid coral reef fishes in their response to more frequent acute thermal fluctuations in upcoming decades.

10.
Mol Biol Rep ; 49(2): 1587-1591, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34773549

RESUMEN

BACKGROUND: The highfin blenny, Lupinoblennius nicholsi, is a marine fish species reported in reef and rocky inshore habitats with a disjunct distribution in the southern Gulf of Mexico. Overall, there are very few studies on this species and there is a scarcity of molecular resources for genetic comparisons. We set out to report the first mitochondrial genome for L. nicholsi and report a range expansion for the species. METHODS AND RESULTS: An individual of L. nicholsi was collected from the coast of Dauphin Island, Alabama. The mitochondrial genome was sequenced, assembled, and annotated. The fragment corresponding to cytochrome oxidase I (COI) was used to compare this sample to other cryptobenthic species of the Atlantic. Finding a mature individual in the coast of Alabama implies this species has a continuous distribution throughout the northern Gulf of Mexico. The mitochondrial genome of L. nicholsi is 16,416 bp in length and comprised of 13 protein coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a non-coding D-loop. Comparisons using COI support the species is L. nicholsi and separate it from other cryptobenthic fishes found in the area. CONCLUSIONS: This study represents the first mitochondrial genome for this L. nicholsi, serving as a reference for future comparative studies with marine fishes. By reporting the range expansion of this species, this study provides insights on the fish diversity of the Gulf of Mexico.


Asunto(s)
Genoma Mitocondrial/genética , Perciformes/genética , Animales , Secuencia de Bases/genética , ADN Mitocondrial/genética , Ecosistema , Peces/genética , Filogenia , ARN de Transferencia/genética
11.
Genome Biol Evol ; 13(2)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33247716

RESUMEN

Local adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle and MinION. We sequenced five visual opsin genes for individuals of Coregonus artedi, Coregonus hoyi, Coregonus kiyi, and Coregonus zenithicus. Comparisons revealed species-specific differences in a key spectral tuning amino acid in rhodopsin (Tyr261Phe substitution), suggesting local adaptation of C. kiyi to the blue-shifted depths of Lake Superior. Ancestral state reconstruction demonstrates that parallel evolution and "toggling" at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients. Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.


Asunto(s)
Evolución Molecular , Proteínas de Peces/genética , Rodopsina/genética , Salmonidae/genética , Animales , Great Lakes Region , Lagos , Secuenciación de Nanoporos
12.
Sci Adv ; 6(12): eaay3423, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32206711

RESUMEN

The marine heatwave of 2016 was one of the longest and hottest thermal anomalies recorded on the Great Barrier Reef, influencing multiple species of marine ectotherms, including coral reef fishes. There is a gap in our understanding of what the physiological consequences of heatwaves in wild fish populations are. Thus, in this study, we used liver transcriptomes to understand the molecular response of five species to the 2016 heatwave conditions. Gene expression was species specific, yet we detected overlap in functional responses associated with thermal stress previously reported in experimental setups. The molecular response was also influenced by the duration of exposure to elevated temperatures. This study highlights the importance of considering the effects of extreme warming events when evaluating the consequences of climate change on fish communities.


Asunto(s)
Arrecifes de Coral , Ecosistema , Calor Extremo , Peces , Rayos Infrarrojos , Adaptación Biológica , Animales , Cambio Climático , Biología Computacional/métodos , Peces/fisiología , Perfilación de la Expresión Génica , Especificidad de la Especie , Estrés Fisiológico , Transcriptoma
13.
Ecol Evol ; 10(6): 2813-2837, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32211158

RESUMEN

Hybrid zones are natural laboratories for investigating the dynamics of gene flow, reproductive isolation, and speciation. A predominant marine hybrid (or suture) zone encompasses Christmas Island (CHR) and Cocos (Keeling) Islands (CKE), where 15 different instances of interbreeding between closely related species from Indian and Pacific Oceans have been documented. Here, we report a case of hybridization between genetically differentiated Pacific and Indian Ocean lineages of the three-spot dascyllus, Dascyllus trimaculatus (Rüppell, 1829). Field observations indicate there are subtle color differences between Pacific and Indian Ocean lineages. Most importantly, population densities of color morphs and genetic analyses (mitochondrial DNA and SNPs obtained via RADSeq) suggest that the pattern of hybridization within the suture zone is not homogeneous. At CHR, both color morphs were present, mitochondrial haplotypes of both lineages were observed, and SNP analyses revealed both pure and hybrid genotypes. Meanwhile, in CKE, the Indian Ocean color morphs were prevalent, only Indian Ocean mitochondrial haplotypes were observed, and SNP analysis showed hybrid individuals with a large proportion (~80%) of their genotypes assigning to the Indian Ocean lineage. We conclude that CHR populations are currently receiving an influx of individuals from both ocean basins, with a greater influence from the Pacific Ocean. In contrast, geographically isolated CKE populations appear to be self-recruiting and with more influx of individuals from the Indian Ocean. Our research highlights how patterns of hybridization can be different at scales of hundreds of kilometers, due to geographic isolation and the history of interbreeding between lineages.

14.
Ecol Evol ; 9(7): 4001-4012, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31015983

RESUMEN

A wide variety of species are distinguished by slight color variations. However, molecular analyses have repeatedly demonstrated that coloration does not always correspond to distinct evolutionary histories between closely related groups, suggesting that this trait is labile and can be misleading for species identification. In the present study, we analyze the evolutionary history of sister species of Prionurus surgeonfishes in the Tropical Eastern Pacific (TEP), which are distinguished by the presence or absence of dark spots on their body. We examined the species limits in this system using comparative specimen-based approaches, a mitochondrial gene (COI), more than 800 nuclear loci (Ultraconserved Elements), and abiotic niche comparisons. The results indicate there is a complete overlap of meristic counts and morphometric measurements between the two species. Further, we detected multiple individuals with intermediate spotting patterns suggesting that coloration is not diagnostic. Mitochondrial data recovered a single main haplotype shared between the species and all locations resulting in a complete lack of structure (ΦST = 0). Genomic analyses also suggest low levels of genetic differentiation (F ST = 0.013), and no alternatively fixed SNPs were detected between the two phenotypes. Furthermore, niche comparisons could not reject niche equivalency or similarity between the species. These results suggest that these two phenotypes are conspecific and widely distributed in the TEP. Here, we recognize Prionurus punctatus Gill 1862 as a junior subjective synonym of P. laticlavius (Valenciennes 1846). The underlying causes of phenotypic variation in this species are unknown. However, this system gives insight into general evolutionary dynamics within the TEP.

15.
PeerJ ; 7: e6541, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842908

RESUMEN

BACKGROUND: Coral reefs are major hotspots of diversity for marine fishes, yet there is still ongoing debate on the mechanisms that promote divergence in these rich ecosystems. Our understanding of how diversity originates in this environment could be enhanced by investigating the evolutionary dynamics of closely related fishes with overlapping ranges. Here, we focus on grunts of the genus Haemulon, a group of coral reef fishes with 15 species in the Western Atlantic, 11 of which are syntopic. METHODS: Wild fish samples from three sympatric species of the Caribbean: Haemulon flavolineatum, H. carbonarium and H. macrostomum, were collected while SCUBA diving. RNA was extracted from livers, and the transcriptomes were assembled and annotated to investigate positive selection (Pairwise d N/d S) and patterns of gene expression between the three species. RESULTS: Pairwise d N/d S analyses showed evidence of positive selection for genes associated with immune response, cranial morphology and formation of the anterior-posterior axis. Analyses of gene expression revealed that despite their sympatric distribution, H. macrostomum showed upregulation of oxidation-reduction machinery, while there was evidence for activation of immune response in H. carbonarium. DISCUSSION: Overall, our analyses suggest closely related grunts show important differences in genes associated with body shape and feeding morphology, a result in-line with previous morphological studies in the group. Further, despite their overlapping distribution they interact with their environment in distinct fashions. This is the largest compendium of genomic information for grunts thus far, representing a valuable resource for future studies in this unique group of coral reef fishes.

16.
Mol Ecol ; 27(22): 4516-4528, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30267545

RESUMEN

Global warming will have far-reaching consequences for marine species over coming decades, yet the magnitude of these effects may depend on the rate of warming across generations. Recent experiments show coral reef fishes can compensate the metabolic challenges of elevated temperature when warm conditions are maintained across generations. However, the effects of a gradual temperature increase across generations remain unknown. In the present study, we analysed metabolic and molecular traits in the damselfish Acanthochromis polyacanthus that were exposed to +1.5°C in the first generation and +3.0°C in the second (Step +3.0°C). This treatment of stepwise warming was compared to fish reared at current-day temperatures (Control), second-generation fish of control parents reared at +3.0°C (Developmental +3.0°C) and fish exposed to elevated temperatures for two generations (Transgenerational +1.5°C and Transgenerational +3.0°C). Hepatosomatic index, oxygen consumption and liver gene expression were compared in second-generation fish of the multiple treatments. Hepatosomatic index increased in fish that developed at +3.0°C, regardless of the parental temperature. Routine oxygen consumption of Step +3.0°C fish was significantly higher than Control; however, their aerobic scope recovered to the same level as Control fish. Step +3.0°C fish exhibited significant upregulation of genes related to mitochondrial activity and energy production, which could be associated with their increased metabolic rates. These results indicate that restoration of aerobic scope is possible when fish experience gradual thermal increase across multiple generations, but the metabolic and molecular responses are different from fish reared at the same elevated thermal conditions in successive generations.


Asunto(s)
Aclimatación/genética , Calentamiento Global , Perciformes/genética , Temperatura , Animales , Arrecifes de Coral , Expresión Génica , Perciformes/fisiología , Fenotipo
17.
Mol Ecol ; 26(2): 639-652, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27873385

RESUMEN

Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister-species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site-associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister-species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174-0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.


Asunto(s)
Hibridación Genética , Perciformes/clasificación , Selección Genética , Simpatría , Animales , Arrecifes de Coral , ADN Mitocondrial/genética , Flujo Génico , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
18.
J Hered ; 106(3): 266-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25825312

RESUMEN

Few studies have reported on the fine-scale population genetics of batoid species in the Atlantic basin. Here, we investigate the genetic diversity and population structure of the spotted eagle ray, Aetobatus narinari, sampled in the northeastern and southwestern parts of the Gulf of Mexico and in the northwestern Caribbean Sea. Samples were collected from 286 individuals sampled across 3 geographic localities. Estimates of divergence based on the mitochondrial cytochrome b gene and 10 nuclear microsatellite loci reveal weak but significant genetic structure among A. narinari populations in this region. Analysis of molecular variance estimates based on both marker types indicate significant differentiation between Florida and Mexico populations, while comparisons with Cuba suggest high levels of gene flow with rays from both Mexico and Florida. Conflicting results were found from the different marker types when sexes were analyzed separately underscoring the importance of applying multiple marker types when making inferences about population structure and sex-biased dispersal. Results from Bayesian clustering analyses suggest rays may be migrating south out of the Gulf of Mexico and into the northwestern Caribbean Sea. Given the impacts of fisheries on this species, coupled with the lack of population genetic data available, these findings offer valuable information to aid with conservation management strategies.


Asunto(s)
Migración Animal , Variación Genética , Genética de Población , Rajidae/genética , Animales , Región del Caribe , ADN Mitocondrial/genética , Femenino , Flujo Génico , Golfo de México , Masculino , Repeticiones de Microsatélite , Modelos Genéticos , Análisis de Secuencia de ADN
19.
Mol Ecol ; 24(7): 1543-57, 2015 04.
Artículo en Inglés | MEDLINE | ID: mdl-25753379

RESUMEN

The drivers of speciation remain among the most controversial topics in evolutionary biology. Initially, Darwin emphasized natural selection as a primary mechanism of speciation, but the architects of the modern synthesis largely abandoned that view in favour of divergence by geographic isolation. The balance between selection and isolation is still at the forefront of the evolutionary debate, especially for the world's tropical oceans where biodiversity is high, but isolating barriers are few. Here, we identify the drivers of speciation in Pacific reef fishes of the genus Acanthurus by comparative genome scans of two peripheral populations that split from a large Central-West Pacific lineage at roughly the same time. Mitochondrial sequences indicate that populations in the Hawaiian Archipelago and the Marquesas Islands became isolated approximately 0.5 Ma. The Hawaiian lineage is morphologically indistinguishable from the widespread Pacific form, but the Marquesan form is recognized as a distinct species that occupies an unusual tropical ecosystem characterized by upwelling, turbidity, temperature fluctuations, algal blooms and little coral cover. An analysis of 3737 SNPs reveals a strong signal of selection at the Marquesas, with 59 loci under disruptive selection including an opsin Rh2 locus. While both the Hawaiian and Marquesan populations indicate signals of drift, the former shows a weak signal of selection that is comparable with populations in the Central-West Pacific. This contrast between closely related lineages reveals one population diverging due primarily to geographic isolation and genetic drift, and the other achieving taxonomic species status under the influence of selection.


Asunto(s)
Evolución Biológica , Arrecifes de Coral , Perciformes/genética , Selección Genética , Animales , ADN Mitocondrial/genética , Genética de Población , Haplotipos , Hawaii , Islas del Pacífico , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
20.
PLoS One ; 7(6): e38042, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701597

RESUMEN

Sea level fluctuations during glacial cycles affect the distribution of shallow marine biota, exposing the continental shelf on a global scale, and displacing coral reef habitat to steep slopes on oceanic islands. In these circumstances we expect that species inhabiting lagoons should show shallow genetic architecture relative to species inhabiting more stable outer reefs. Here we test this expectation on an ocean-basin scale with four wrasses (genus Halichoeres): H. claudia (N = 194, with ocean-wide distribution) and H. ornatissimus (N = 346, a Hawaiian endemic) inhabit seaward reef slopes, whereas H. trimaculatus (N = 239) and H. margaritaceus (N = 118) inhabit lagoons and shallow habitats throughout the Pacific. Two mitochondrial markers (cytochrome oxidase I and control region) were sequenced to resolve population structure and history of each species. Haplotype and nucleotide diversity were similar among all four species. The outer reef species showed significantly less population structure, consistent with longer pelagic larval durations. Mismatch distributions and significant negative Fu's F values indicate Pleistocene population expansion for all species, and (contrary to expectations) shallower histories in the outer slope species. We conclude that lagoonal wrasses may persist through glacial habitat disruptions, but are restricted to refugia during lower sea level stands. In contrast, outer reef slope species have homogeneous and well-connected populations through their entire ranges regardless of sea level fluctuations. These findings contradict the hypothesis that shallow species are less genetically diverse as a consequence of glacial cycles.


Asunto(s)
Ecosistema , Variación Genética , Genética de Población , Perciformes/genética , Animales , Secuencia de Bases , Arrecifes de Coral , Cartilla de ADN , ADN Mitocondrial/genética , Marcadores Genéticos/genética , Haplotipos/genética , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Océano Pacífico , Perciformes/fisiología , Filogeografía , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA