Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37507854

RESUMEN

Gastroesophageal reflux disease (GERD) leads to the accumulation of bile-induced reactive oxygen species and oxidative stress in esophageal tissues, causing inflammation and DNA damage. The progression sequence from healthy esophagus to GERD and eventually cancer is associated with a microbiome shift. Lactobacillus species are commensal organisms known for their probiotic and antioxidant characteristics in the healthy esophagus. This prompted us to investigate how Lactobacilli survive in a bile-rich environment during GERD, and to identify their interaction with the bile-injured esophageal cells. To model human reflux conditions, we exposed three Lactobacillus species (L. acidophilus, L. plantarum, and L. fermentum) to bile. All species were tolerant to bile possibly enabling them to colonize the esophageal epithelium under GERD conditions. Next, we assessed the antioxidant potential of Lactobacilli and role in bile injury repair: we measured bile-induced DNA damage using the ROS marker 8-oxo guanine and COMET assay. Lactobacillus addition after bile injury accelerated repair of bile-induced DNA damage through recruitment of pH2AX/RAD51 and reduced NFκB-associated inflammation in esophageal cells. This study demonstrated anti-genotoxic and anti-inflammatory effects of Lactobacilli, making them of significant interest in the prevention of Barrett's esophagus and esophageal adenocarcinoma in patients with GERD.

2.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233047

RESUMEN

Obesity is a known risk factor for the development of gastroesophageal reflux disease (GERD), Barrett's Esophagus (BE) and the progression to esophageal adenocarcinoma. The mechanisms by which obesity contributes to GERD, BE and its progression are currently not well understood. Recently, changes in lipid metabolism especially in the context of a high fat diet have been linked to GERD and BE leading us to explore whether fatty acid oxidation plays a role in the disease progression from GERD to esophageal adenocarcinoma. To that end, we analyzed the expression of the rate-limiting enzyme, carnitine palmytoyltransferase 1A (CPT1A), in human tissues and cell lines representing different stages in the sequence from normal squamous esophagus to cancer. We determined uptake of palmitic acid, the most abundant fatty acid in human serum, with fluorescent dye-labeled lipids as well as functional consequences of stimulation with palmitic acid relevant to Barrett's tumorigenesis, e.g., proliferation, characteristics of stemness and IL8 mediated inflammatory signaling. We further employed different mouse models including a genetic model of Barrett's esophagus based on IL1ß overexpression in the presence and absence of a high fat diet and deoxycholic acid to physiologically mimic gastrointestinal reflux in the mice. Together, our data demonstrate that CPT1A is upregulated in Barrett's tumorigenesis and that experimental palmitic acid is delivered to mitochondria and associated with increased cell proliferation and stem cell marker expression.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Carnitina O-Palmitoiltransferasa , Neoplasias Esofágicas , Reflujo Gastroesofágico , Adenocarcinoma/complicaciones , Adenocarcinoma/genética , Animales , Esófago de Barrett/genética , Carcinogénesis/genética , Carnitina , Carnitina O-Palmitoiltransferasa/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Ácido Desoxicólico , Neoplasias Esofágicas/complicaciones , Neoplasias Esofágicas/genética , Colorantes Fluorescentes , Reflujo Gastroesofágico/patología , Humanos , Interleucina-8 , Ratones , Obesidad/complicaciones , Ácido Palmítico
3.
Microbiol Spectr ; 10(2): e0242121, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35377225

RESUMEN

E-cigarettes (e-cigs) have drastically increased in popularity during the last decade, especially among teenagers. While recent studies have started to explore the effect of e-cigs in the oral cavity, little is known about their effects on the oral microbiota and how they could affect oral health and potentially lead to disease, including periodontitis and head and neck cancers. To explore the impact of e-cigs on oral bacteria, we selected members of the genus Streptococcus, which are abundant in the oral cavity. We exposed the commensals Streptococcus sanguinis and Streptococcus gordonii and the opportunistic pathogen Streptococcus mutans, best known for causing dental caries, to e-liquids and e-cig aerosols with and without nicotine and with and without menthol flavoring and measured changes in growth patterns and biofilm formation. Our results demonstrate that e-cig aerosols hindered the growth of S. sanguinis and S. gordonii, while they did not affect the growth of S. mutans. We also show that e-cig aerosols significantly increased biofilm formation by S. mutans but did not affect the biofilm formation of the two commensals. We found that S. mutans exhibits higher hydrophobicity and coaggregation abilities along with higher attachment to OKF6 cells than S. sanguinis and S. gordonii. Therefore, our data suggest that e-cig aerosols have the potential to dysregulate oral bacterial homeostasis by suppressing the growth of commensals while enhancing the biofilm formation of the opportunistic pathogen S. mutans. This study highlights the importance of understanding the consequences of e-cig aerosol exposure on selected commensals and pathogenic species. Future studies modeling more complex communities will provide more insight into how e-cig aerosols and vaping affect the oral microbiota. IMPORTANCE Our study shows that e-cigarette aerosol exposure of selected bacteria known to be residents of the oral cavity hinders the growth of two streptococcal commensals while enhancing biofilm formation, hydrophobicity, and attachment for the pathogen S. mutans. These results indicate that e-cigarette vaping could open a niche for opportunistic bacteria such as S. mutans to colonize the oral cavity and affect oral health.


Asunto(s)
Caries Dental , Sistemas Electrónicos de Liberación de Nicotina , Adolescente , Aerosoles , Biopelículas , Humanos , Streptococcus gordonii/fisiología , Streptococcus mutans/fisiología
4.
Cells ; 11(5)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269394

RESUMEN

E-cigarette (e-cig) vapor has been shown to play a pathological role in oral health and alter the oral microbiota, providing growth advantages for opportunistic pathogens. Enrichment of Staphylococcus aureus, a commensal resident in the oral cavity, correlates with the progression of periodontal disease, suggesting a role as an opportunistic pathogen. Environmental conditions, such as cigarette smoke, are known to increase S. aureus virulence, yet the role of S. aureus in periodontitis and oral preneoplasia is unknown. We exposed oral epithelial cells to e-cig aerosols and showed a dose-dependent cell viability reduction, regardless of nicotine content, in a possible attempt to repair DNA damage, as measured by pH2AX. S. aureus attachment to oral epithelial cells and bacterial biofilm formation were enhanced upon e-cig exposure, indicating an increased capacity for oral colonization. Mechanistically, e-cig aerosol exposure resulted in an immunosuppression, as determined by a reduction in IL8, IL6, and IL1ß secretion by oral epithelial cells during co-culture with S. aureus. Consistent with this, e-cig vape reduced the oral epithelial cell clearance of S. aureus. Furthermore, we observed an increased expression of the inflammatory regulator COX2. This work suggests that e-cigs promote S. aureus colonization and modulate the oral inflammatory response, possibly promoting oral periodontitis and preneoplasia.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Staphylococcus aureus Resistente a Meticilina , Periodontitis , Aerosoles , Humanos , Inmunidad , Pulmón/patología , Periodontitis/metabolismo , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...