Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Eng Technol ; 15(3): 317-332, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38315312

RESUMEN

PURPOSE: Altered hemodynamics caused by the presence of an endovascular device may undermine the success of peripheral stenting procedures. Flow-enhanced stent designs are under investigation to recover physiological blood flow patterns in the treated artery and reduce long-term complications. However, flow-enhanced designs require the development of customised manufacturing processes that consider the complex behaviour of Nickel-Titanium (Ni-Ti). While the manufacturing routes of traditional self-expanding Ni-Ti stents are well-established, the process to introduce alternative stent designs is rarely reported in the literature, with much of this information (especially related to shape-setting step) being commercially sensitive and not reaching the public domain, as yet. METHODS: A reliable manufacturing method was developed and improved to induce a helical ridge onto laser-cut and wire-braided Nickel-Titanium self-expanding stents. The process consisted of fastening the stent into a custom-built fixture that provided the helical shape, which was followed by a shape-setting in air furnace and rapid quenching in cold water. The parameters employed for the shape-setting in air furnace were thoroughly explored, and their effects assessed in terms of the mechanical performance of the device, material transformation temperatures and surface finishing. RESULTS: Both stents were successfully imparted with a helical ridge and the optimal heat treatment parameters combination was found. The settings of 500 °C/30 min provided mechanical properties comparable with the original design, and transformation temperatures suitable for stenting applications (Af = 23.5 °C). Microscopy analysis confirmed that the manufacturing process did not alter the surface finishing. Deliverability testing showed the helical device could be loaded onto a catheter delivery system and deployed with full recovery of the expanded helical configuration. CONCLUSION: This demonstrates the feasibility of an additional heat treatment regime to allow for helical shape-setting of laser-cut and wire-braided devices that may be applied to further designs.


Asunto(s)
Ensayo de Materiales , Níquel , Diseño de Prótesis , Titanio , Titanio/química , Níquel/química , Stents Metálicos Autoexpandibles , Rayos Láser , Propiedades de Superficie , Stents , Humanos
2.
PLoS One ; 18(8): e0283492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37556457

RESUMEN

The objective of this study is to present a credibility assessment of finite element modelling of self-expanding nickel-titanium (Ni-Ti) stents through verification and validation (VV) activities, as set out in the ASME VV-40 standard. As part of the study, the role of calculation verification, model input sensitivity, and model validation is examined across three different application contexts (radial compression, stent deployment in a vessel, fatigue estimation). A commercially available self-expanding Ni-Ti stent was modelled, and calculation verification activities addressed the effects of mesh density, element integration and stable time increment on different quantities of interests, for each context of use considered. Sensitivity analysis of the geometrical and material input parameters and validation of deployment configuration with in vitro comparators were investigated. Results showed similar trends for global and local outputs across the contexts of use in response to the selection of discretization parameters, although with varying sensitivities. Mesh discretisation showed substantial variability for less than 4 × 4 element density across the strut cross-section in radial compression and deployment cases, while a finer grid was deemed necessary in fatigue estimation for reliable predictions of strain/stress. Element formulation also led to substantial variation depending on the chosen integration options. Furthermore, for explicit analyses, model results were highly sensitive to the chosen target time increment (e.g., mass scaling parameters), irrespective of whether quasistatic conditions were ensured (ratios of kinetic and internal energies below 5%). The higher variability was found for fatigue life simulation, with the estimation of fatigue safety factor varying up to an order of magnitude depending on the selection of discretization parameters. Model input sensitivity analysis highlighted that the predictions of outputs such as radial force and stresses showed relatively low sensitivity to Ni-Ti material parameters, which suggests that the calibration approaches used in the literature to date appear reasonable, but a higher sensitivity to stent geometry, namely strut thickness and width, was found. In contrast, the prediction of vessel diameter following deployment was least sensitive to numerical parameters, and its validation with in vitro comparators offered a simple and accurate (error ~ 1-2%) method when predicting diameter gain, and lumen area, provided that the material of the vessel is appropriately characterized and modelled.


Asunto(s)
Níquel , Titanio , Análisis de Elementos Finitos , Estrés Mecánico , Stents , Simulación por Computador , Diseño de Prótesis
3.
J Mech Behav Biomed Mater ; 132: 105259, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569290

RESUMEN

Despite being commonly employed to treat peripheral artery disease, self-expanding Nitinol stents are still associated with relatively high incidence of failure in the mid- and long-term due to in-stent restenosis or fatigue fracture. The practice of stent oversizing is necessary to obtain suitable lumen gain and apposition to the vessel wall, though it is regarded as a potential cause of negative clinical outcomes when mis-sizing occurs. The objective of this study was to develop a computational model to provide a better understanding of the structural effects of stent sizing in a patient-specific scenario, considering oversizing ratio OS, defined as the stent nominal diameter to the average vessel diameter, between 1.0 and 1.8. It was found that OS < 1.2 resulted in problematic short-term outcomes, with poor lumen gain and significant strut malapposition. Oversizing ratios that were in the range 1.2 ≤ OS ≤ 1.4 provided the optimum biomechanical performance following implantation, with improved lumen gain, reduced incomplete stent apposition and favourable predicted long-term fatigue performance. Excessive oversizing, OS > 1.4, did not provide any further benefit in outcomes, showing limited increases in lumen gain and unfavourable long-term performance, with higher mean strain values predicted from the fatigue analysis. Therefore, our findings predict that the optimal oversizing ratio for self-expanding Nitinol stents is in the range of 1.2 ≤ OS ≤ 1.4, which is similar to clinical observations, with this study providing detailed insight into the biomechanical basis for this.


Asunto(s)
Arteria Femoral , Enfermedad Arterial Periférica , Aleaciones , Humanos , Enfermedad Arterial Periférica/terapia , Diseño de Prótesis , Stents , Resultado del Tratamiento
4.
Comput Biol Med ; 143: 105248, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35124437

RESUMEN

BACKGROUND: Superficial femoral arteries (SFAs) treated with self-expanding stents are widely affected by in-stent restenosis (ISR), especially in case of long lesions and multiple overlapping devices. The altered hemodynamics provoked by the stent is considered as a promoting factor of ISR. In this context, this work aims to analyze the impact of stent design and stent overlapping on patient-specific SFA hemodynamics. METHODS: Through a morphing technique, single or multiple stents were virtually implanted within two patient-specific, post-operative SFA models reconstructed from computed tomography. The stented domains were used to perform computational fluid dynamics simulations, quantifying wall shear stress (WSS) based descriptors including time-averaged WSS (TAWSS), oscillatory shear index (OSI), transverse WSS (transWSS), and WSS ratio (WSSRATIO). Four stent designs (three laser-cut - EverFlex, Zilver and S.M.A.R.T. - and one prototype braided stent), and three typical clinical scenarios accounting for different order of stent implantation and overlapping length were compared. RESULTS: The main hemodynamic differences were found between the two types of stent designs (i.e. laser-cut vs. braided stents). The braided stent presented lower median transWSS and higher median WSSRATIO than the laser-cut stents (p < 0.0001). The laser-cut stents presented comparable WSS-based descriptor values, except for the Zilver, exhibiting a median TAWSS ∼30% higher than the other stents. Stent overlapping provoked an abrupt alteration of the WSS-based descriptors. The overlapping length, rather than the order of stent implantation, highly and negatively impacted the hemodynamics. CONCLUSION: The proposed computational workflow compared different SFA stent designs and stent overlapping configurations, highlighting those providing the most favorable hemodynamic conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...