Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Thromb Haemost ; 21(9): 2528-2544, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37085035

RESUMEN

BACKGROUND: Germline mutations in the ETV6 transcription factor gene are responsible for familial thrombocytopenia and leukemia predisposition syndrome. Although previous studies have shown that ETV6 plays an important role in megakaryocyte (MK) maturation and platelet formation, the mechanisms by which ETV6 dysfunction promotes thrombocytopenia remain unclear. OBJECTIVES: To decipher the transcriptional mechanisms and gene regulatory network linking ETV6 germline mutations and thrombocytopenia. METHODS: Presuming that ETV6 mutations result in selective effects at a particular cell stage, we applied single-cell RNA sequencing to understand gene expression changes during megakaryopoiesis in peripheral CD34+ cells from healthy controls and patients with ETV6-related thrombocytopenia. RESULTS: Analysis of gene expression and regulon activity revealed distinct clusters partitioned into 7 major cell stages: hematopoietic stem/progenitor cells, common-myeloid progenitors (CMPs), MK-primed CMPs, granulocyte-monocyte progenitors, MK-erythroid progenitors (MEPs), progenitor MKs/mature MKs, and platelet-like particles. We observed a differentiation trajectory in which MEPs developed directly from hematopoietic stem/progenitor cells and bypassed the CMP stage. ETV6 deficiency led to the development of aberrant cells as early as the MEP stage, which intensified at the progenitor MK/mature MK stage, with a highly deregulated core "ribosome biogenesis" pathway. Indeed, increased translation levels have been documented in patient CD34+-derived MKs with overexpression of ribosomal protein S6 and phosphorylated ribosomal protein S6 in both CD34+-derived MKs and platelets. Treatment of patient MKs with the ribosomal biogenesis inhibitor CX-5461 resulted in an increase in platelet-like particles. CONCLUSION: These findings provide novel insight into both megakaryopoiesis and the link among ETV6, translation, and platelet production.


Asunto(s)
Megacariocitos , Trombocitopenia , Humanos , Diferenciación Celular , Megacariocitos/metabolismo , Proteína S6 Ribosómica/metabolismo , Análisis de la Célula Individual , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombopoyesis/genética , Antígenos CD34 , Proteína ETS de Variante de Translocación 6
2.
J Thromb Haemost ; 19(9): 2287-2301, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34060193

RESUMEN

BACKGROUND: GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE: To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD: A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS: The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION: The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.


Asunto(s)
Factor de Transcripción GATA1 , Megacariocitos , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Trombocitopenia , Plaquetas , Factor de Transcripción GATA1/genética , Silenciador del Gen , Humanos , Trombocitopenia/genética , Trombopoyesis/genética , Factores de Transcripción
3.
Cytometry A ; 99(5): 435-445, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33491921

RESUMEN

The identification of a bacterial, viral, or even noninfectious cause is essential in the management of febrile syndrome in the emergency department (ED), especially in epidemic contexts such as flu or CoVID-19. The aim was to assess discriminative performances of two biomarkers, CD64 on neutrophils (nCD64) and CD169 on monocytes (mCD169), using a new flow cytometry procedure, in patients presenting with fever to the ED during epidemics. Eighty five adult patients presenting with potential infection were included during the 2019 flu season in the ED of La Timone Hospital. They were divided into four diagnostic outcomes according to their clinical records: no-infection, bacterial infection, viral infection and co-infection. Seventy six patients with confirmed SARS-CoV-2 infection were also compared to 48 healthy volunteers. For the first cohort, 38 (45%) patients were diagnosed with bacterial infections, 11 (13%) with viral infections and 29 (34%) with co-infections. mCD169 was elevated in patients with viral infections, with a majority of Flu A virus or Respiratory Syncytial Virus, while nCD64 was elevated in subjects with bacterial infections, with a majority of Streptococcus pneumoniae and Escherichia coli. nCD64 and mCD169 showed 90% and 80% sensitivity, and 78% and 91% specificity, respectively, for identifying patients with bacterial or viral infections. When studied in a second cohort, mCD169 was elevated in 95% of patients with SARS-CoV-2 infections and remained at normal level in 100% of healthy volunteers. nCD64 and mCD169 have potential for accurately distinguishing bacterial and acute viral infections. Combined in an easy and rapid flow cytometry procedure, they constitute a potential improvement for infection management in the ED, and could even help for triage of patients during emerging epidemics.


Asunto(s)
Infecciones Bacterianas/diagnóstico , COVID-19/diagnóstico , Servicio de Urgencia en Hospital , Citometría de Flujo , Monocitos/inmunología , Receptores de IgG/sangre , Lectina 1 Similar a Ig de Unión al Ácido Siálico/sangre , Adulto , Anciano , Infecciones Bacterianas/sangre , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Biomarcadores/sangre , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Diagnóstico Diferencial , Femenino , Interacciones Huésped-Patógeno , Humanos , Masculino , Persona de Mediana Edad , Monocitos/microbiología , Monocitos/virología , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados
4.
Front Pharmacol ; 11: 863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581813

RESUMEN

Platelets are the cornerstone of hemostasis. However, their exaggerated aggregation induces deleterious consequences. In several diseases, such as infectious endocarditis and sepsis, the interaction between platelets and bacteria leads to platelet aggregation. Despite platelet involvement, no antiplatelet therapy is currently recommended in these infectious diseases. We aimed here, to evaluate, in vitro, the effect of antiplatelet drugs on platelet aggregation induced by two of the bacterial pathogens most involved in infectious endocarditis, Staphylococcus aureus and Streptococcus sanguinis. Blood samples were collected from healthy donors (n = 43). Treated platelet rich plasmas were incubated with three bacterial strains of each species tested. Platelet aggregation was evaluated by Light Transmission Aggregometry. CD62P surface exposure was evaluated by flow cytometry. Aggregate organizations were analyzed by scanning electron microscopy. All the strains tested induced a strong platelet aggregation. Antiplatelet drugs showed distinct effects depending on the bacterial species involved with different magnitude between strains of the same species. Ticagrelor exhibited the highest inhibitory effect on platelet activation (p <0.001) and aggregation (p <0.01) induced by S. aureus. In the case of S. sanguinis, platelet activation and aggregation were better inhibited using the combination of both aspirin and ticagrelor (p <0.05 and p <0.001 respectively). Aggregates ultrastructure and effect of antiplatelet drugs observed by scanning electron microscopy depended on the species involved. Our results highlighted that the effect of antiplatelet drugs depended on the bacterial species involved. We might recommend therefore to consider the germ involved before introduction of an optimal antiplatelet therapy.

5.
Future Microbiol ; 15: 189-201, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32065550

RESUMEN

Aim: In an Emergency Department (ED), the etiological identification of infected subjects is essential. 13 infection-related biomarkers were assessed using a new flow cytometry procedure. Materials & methods: If subjects presented with febrile symptoms at the ED, 13 biomarkers' levels, including CD64 on neutrophils (nCD64) and CD169 on monocytes (mCD169), were tested and compared with clinical records. Results: Among 50 subjects, 78% had bacterial infections and 8% had viral infections. nCD64 showed 82% sensitivity and 91% specificity for identifying subjects with bacterial infections. mCD169, HLA-ABC ratio and HLA-DR on monocytes had high values in subjects with viral infections. Conclusion: Biomarkers showed promising performances to improve the ED's infectious stratification.


Asunto(s)
Infecciones Bacterianas/diagnóstico , Biomarcadores/sangre , Virosis/diagnóstico , Adulto , Infecciones Bacterianas/fisiopatología , Proteína C-Reactiva/análisis , Servicio de Urgencia en Hospital , Femenino , Fiebre , Citometría de Flujo , Antígenos HLA/sangre , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Neutrófilos/inmunología , Polipéptido alfa Relacionado con Calcitonina/sangre , Receptores de IgG/sangre , Sensibilidad y Especificidad , Lectina 1 Similar a Ig de Unión al Ácido Siálico/sangre , Virosis/fisiopatología
6.
Res Pract Thromb Haemost ; 3(4): 684-694, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31624788

RESUMEN

Antiplatelet therapy through inhibition of the adenosine diphosphate (ADP)/P2Y12 pathway is commonly used in the treatment of acute coronary syndrome (ACS). Although efficient in preventing platelet activation and thrombus formation, it increases the risk of bleeding complications. In patients with ACS receiving platelet aggregation inhibitors, that is, P2Y12 blockers (n = 923), we investigated the relationship between plasma and platelet-associated CD40L levels and bleeding events (n = 71). Treatment with P2Y12 inhibitors in patients with ACS did not affect plasma-soluble CD40L levels, but decreased platelet CD40L surface expression (pCD40L) and platelet-released CD40L (rCD40L) levels in response to stimulation as compared to healthy controls. In vitro inhibition of the ADP pathway in healthy control platelets reduced both pCD40L and rCD40L levels. In a multivariable analysis, the reduced pCD40L level observed in ACS patients was significantly associated with the risk of bleeding occurrence (adjusted odds ratio = 0.15; 95% confidence interval = 0.034-0.67). P2Y12 inhibitor-treated (ticagrelor) mice exhibited a 2.5-fold increase in tail bleeding duration compared with controls. A significant reduction in bleeding duration was observed on CD40L+/+ but not CD40L-/- platelet infusion. In addition, CD40L blockade in P2Y12 inhibitor-treated blood samples from a healthy human reduced thrombus growth over immobilized collagen under arterial flow. In conclusion, measurement of pCD40L may offer a novel approach to assessing bleeding risk in patients with ACS who are being treated with P2Y12 inhibitors.

7.
Cytometry B Clin Cytom ; 96(5): 426-435, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31301165

RESUMEN

BACKGROUND: Flow cytometry essentially focuses on surface-expressed proteins, with few protocols being devoted to intracellular components. We evaluated a two-step procedure using new formaldehyde-free permeabilization and staining reagents that allow the staining of platelets and red blood cells (RBCs) from whole blood. METHODS: Citrated blood was treated with the new staining protocol (NSP) or control reagent (phosphate-buffered solution bovine serum albumin) and stained with antibodies against surface or intracellular markers. The effects of the NSP on cell integrity, morphology, and content were evaluated. RESULTS: The NSP slightly reduced the cell count (~20%) and changed the RBC morphology with a 42% mean diameter reduction. Conversely, the NSP did not affect platelet discoid morphology and led to a minor size decrease (11%). These morphological changes neither impelled a gating strategy modification nor interfered with the discrimination among populations based on surface markers. The NSP provided intracellular access to all the tested antigens: CD62P, FXIII, and CD63 in platelets and glycated and fetal hemoglobin (HbA1c and HbF) and nucleic acid in RBCs. The NSP gave excellent intra-assay precision with minimal impact on cell morphology and fluorescence labelling over time (up to 24 h). CONCLUSIONS: With the ability to detect surface and intracellular antigens through a rapid preparation protocol without washing steps or toxic formaldehyde treatment, this NSP designed for research offers a marked improvement in the analysis of platelets and RBCs isolated directly from whole blood. Consequently, the NSP opens new avenues to investigate platelet degranulation and erythrocyte subpopulations. © 2019 International Clinical Cytometry Society.


Asunto(s)
Plaquetas/citología , Eritrocitos/citología , Plaquetas/metabolismo , Permeabilidad de la Membrana Celular , Eritrocitos/metabolismo , Citometría de Flujo/métodos , Humanos
8.
Cytometry B Clin Cytom ; 96(2): 128-133, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30734503

RESUMEN

BACKGROUND: In children with acute lymphoblastic leukemia (ALL) low levels of minimal residual disease (MRD) after induction, essentially assessed in the bone marrow, have been shown to be of good prognosis. However, only few studies have tested the peripheral blood for MRD. METHODS: Here, we report the impact on survival of peripheral blood (PB) MRD assessment by multiparameter flow cytometry (MFC) at early time points of treatment in 125 B-ALL children, compared to Day 35 molecular bone marrow (BM) MRD. Patients were sampled for MFC one week postdiagnosis after a pre-phase of corticotherapy (Day 8), then after one week of chemotherapy (Day 15). The study enrolled 67 boys and 58 girls with a median follow-up of 52 months. Over the duration of the study, 20 patients relapsed and eight died. MFC was performed based on the leukemia-associated immunophenotype at diagnosis, using panels of 10 antibodies. RESULTS: Although, PB MFC-MRD had no prognostic impact at Day 8, Day 15 MRD negativity was associated with a significantly better 4 years DFS (91.6 ± 3% vs. 67.6 ± 9% P = 0.0013). Furthermore, while MFC and molecular data were concordant in most cases, patients with detectable PB MRD on Day 15, yet negative in BM on Day 35 had a significantly lower DFS (P < 0.0001). CONCLUSION: This study demonstrates that the less invasive procedure of MFC-MRD assessment in PB can be informative for childhood ALL patients at the early point of Day 15 of the treatment schedule. © 2019 International Clinical Cytometry Society.


Asunto(s)
Citometría de Flujo , Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Neoplasia Residual/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangre
9.
Cytometry B Clin Cytom ; 96(2): 158-163, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30698327

RESUMEN

BACKGROUND: Flow cytometry is a powerful tool for the detection of minimal residual disease (MRD) of B cell precursor acute lymphoblastic leukemia (BCP-ALL) patients. However, the staining process and the choice of antibodies rely on laboratory expertise and may be source of variability or technical errors. Recently, Beckman Coulter commercialized a ready to use tube with dried format reagents for BCP-ALL MRD detection. The aim of this study is to evaluate the applicability of this tube and to compare it to a conventional (liquid format reagents) method. METHODS: Thirty-one samples from B ALL patients were analyzed: 19 bone marrow (BM) aspirations, 10 peripheral blood (PB) samples and 2 cerebrospinal fluids at different stages of the follow-up. In addition, we tested 5 bone marrow samples mixed into non-pathological (control) bone marrow. The dried format tube included seven antibodies: CD45Kro, CD58FITC, CD34ECD, CD10PC5.5, CD19PC7, CD38AA700, CD20AA750, with possibility of additional antibodies for blast markers identified at diagnosis. For comparison, a liquid format tube was prepared, and considered as the reference. RESULTS: This tube was validated for daily routine laboratory, with satisfying qualitative (MRD + or MRD-) and quantitative (MRD percentages) correlation with the reference tube. CONCLUSION: With this single dried format tube, we showed interesting results for BCP-ALL MRD detection in the aim of standardization and reliable interlaboratory results. It allows accurate MRD detection including low levels (10-4), and offers possibility to increase performance (supplementary antibody) within a preestablished effective antibody panel for BCP-ALL MRD. © 2018 International Clinical Cytometry Society.


Asunto(s)
Anticuerpos/inmunología , Citometría de Flujo , Indicadores y Reactivos , Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Enfermedad Aguda , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Neoplasia Residual/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Control de Calidad
11.
Ann Biol Clin (Paris) ; 75(6): 699-702, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29043981

RESUMEN

Southeast asian ovalocytosis (SAO) is characterized by macro-ovalocytes and ovalo-stomatocytes on blood smear. SAO is common in Malaisia and Papua-New-Guinea where upwards to 40 per cent of the population is affected in some coastal region. Inherited in an autosomal dominant way, illness results from deletion of codons 400-408 in SLC4A1 gene which encodes for band 3 erythrocyte membrane protein. This deletion is responsible for an unusual erythrocyte stiffness and oval shape of the cells on blood smear. Heterozygous carriers are usually asymptomatic whereas homozygous are not viable without an intensive antenatal care. Here, we describe 4 patients diagnosed incidentally by cytogram appearance of the Advia® 2120i (Siemens) representing hemoglobin concentration according to red blood mean cellular volume (GR/VCH).


Asunto(s)
Células Sanguíneas/patología , Eliptocitosis Hereditaria/diagnóstico , Hallazgos Incidentales , Adulto , Citodiagnóstico/métodos , Citodiagnóstico/normas , Eliptocitosis Hereditaria/sangre , Eliptocitosis Hereditaria/patología , Índices de Eritrocitos , Femenino , Pruebas Hematológicas , Humanos , Masculino , Persona de Mediana Edad , Embarazo , Complicaciones Hematológicas del Embarazo/sangre , Complicaciones Hematológicas del Embarazo/diagnóstico , Complicaciones Hematológicas del Embarazo/patología , Adulto Joven
13.
Haematologica ; 102(6): 1006-1016, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28255014

RESUMEN

Congenital macrothrombocytopenia is a family of rare diseases, of which a significant fraction remains to be genetically characterized. To analyze cases of unexplained thrombocytopenia, 27 individuals from a patient cohort of the Bleeding and Thrombosis Exploration Center of the University Hospital of Marseille were recruited for a high-throughput gene sequencing study. This strategy led to the identification of two novel FLI1 variants (c.1010G>A and c.1033A>G) responsible for macrothrombocytopenia. The FLI1 variant carriers' platelets exhibited a defect in aggregation induced by low-dose adenosine diphosphate (ADP), collagen and thrombin receptor-activating peptide (TRAP), a defect in adenosine triphosphate (ATP) secretion, a reduced mepacrine uptake and release and a reduced CD63 expression upon TRAP stimulation. Precise ultrastructural analysis of platelet content was performed using transmission electron microscopy and focused ion beam scanning electron microscopy. Remarkably, dense granules were nearly absent in the carriers' platelets, presumably due to a biogenesis defect. Additionally, 25-29% of the platelets displayed giant α-granules, while a smaller proportion displayed vacuoles (7-9%) and autophagosome-like structures (0-3%). In vitro study of megakaryocytes derived from circulating CD34+ cells of the carriers revealed a maturation defect and reduced proplatelet formation potential. The study of the FLI1 variants revealed a significant reduction in protein nuclear accumulation and transcriptional activity properties. Intraplatelet flow cytometry efficiently detected the biomarker MYH10 in FLI1 variant carriers. Overall, this study provides new insights into the phenotype, pathophysiology and diagnosis of FLI1 variant-associated thrombocytopenia.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Trombocitopenia/etiología , Adulto , Plaquetas/patología , Plaquetas/ultraestructura , Núcleo Celular/química , Variación Genética , Humanos , Masculino , Megacariocitos/patología , Persona de Mediana Edad , Agregación Plaquetaria/genética , Proteína Proto-Oncogénica c-fli-1/genética , Trombocitopenia/congénito , Transcripción Genética , Adulto Joven
14.
Haematologica ; 102(2): 282-294, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27663637

RESUMEN

Variants in ETV6, which encodes a transcription repressor of the E26 transformation-specific family, have recently been reported to be responsible for inherited thrombocytopenia and hematologic malignancy. We sequenced the DNA from cases with unexplained dominant thrombocytopenia and identified six likely pathogenic variants in ETV6, of which five are novel. We observed low repressive activity of all tested ETV6 variants, and variants located in the E26 transformation-specific binding domain (encoding p.A377T, p.Y401N) led to reduced binding to corepressors. We also observed a large expansion of megakaryocyte colony-forming units derived from variant carriers and reduced proplatelet formation with abnormal cytoskeletal organization. The defect in proplatelet formation was also observed in control CD34+ cell-derived megakaryocytes transduced with lentiviral particles encoding mutant ETV6. Reduced expression levels of key regulators of the actin cytoskeleton CDC42 and RHOA were measured. Moreover, changes in the actin structures are typically accompanied by a rounder platelet shape with a highly heterogeneous size, decreased platelet arachidonic response, and spreading and retarded clot retraction in ETV6 deficient platelets. Elevated numbers of circulating CD34+ cells were found in p.P214L and p.Y401N carriers, and two patients from different families suffered from refractory anemia with excess blasts, while one patient from a third family was successfully treated for acute myeloid leukemia. Overall, our study provides novel insights into the role of ETV6 as a driver of cytoskeletal regulatory gene expression during platelet production, and the impact of variants resulting in platelets with altered size, shape and function and potentially also in changes in circulating progenitor levels.


Asunto(s)
Plaquetas/metabolismo , Mutación de Línea Germinal , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Trombopoyesis/genética , Antígenos CD34/metabolismo , Recuento de Células Sanguíneas , Diferenciación Celular , Familia , Femenino , Regulación de la Expresión Génica , Genotipo , Humanos , Hiperplasia , Masculino , Megacariocitos/citología , Megacariocitos/metabolismo , Megacariocitos/patología , Linaje , Fenotipo , Recuento de Plaquetas , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Proteína ETS de Variante de Translocación 6
15.
J Lipid Res ; 56(6): 1100-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25914170

RESUMEN

A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells.


Asunto(s)
ADN Mitocondrial/genética , Proteínas Mitocondriales/biosíntesis , Biogénesis de Organelos , Tretinoina/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , ADN Mitocondrial/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa
16.
PLoS One ; 7(11): e49065, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23145071

RESUMEN

Regulation of the extracellular matrix (ECM) plays an important functional role either in physiological or pathological conditions. The plasminogen activation (PA) system, comprising the uPA and tPA proteases and their inhibitor PAI-1, is one of the main suppliers of extracellular proteolytic activity contributing to tissue remodeling. Although its function in development is well documented, its precise role in mouse embryonic stem cell (ESC) differentiation in vitro is unknown. We found that the PA system components are expressed at very low levels in undifferentiated ESCs and that upon differentiation uPA activity is detected mainly transiently, whereas tPA activity and PAI-1 protein are maximum in well differentiated cells. Adipocyte formation by ESCs is inhibited by amiloride treatment, a specific uPA inhibitor. Likewise, ESCs expressing ectopic PAI-1 under the control of an inducible expression system display reduced adipogenic capacities after induction of the gene. Furthermore, the adipogenic differentiation capacities of PAI-1(-/-) induced pluripotent stem cells (iPSCs) are augmented as compared to wt iPSCs. Our results demonstrate that the control of ESC adipogenesis by the PA system correspond to different successive steps from undifferentiated to well differentiated ESCs. Similarly, skeletal myogenesis is decreased by uPA inhibition or PAI-1 overexpression during the terminal step of differentiation. However, interfering with uPA during days 0 to 3 of the differentiation process augments ESC myotube formation. Neither neurogenesis, cardiomyogenesis, endothelial cell nor smooth muscle formation are affected by amiloride or PAI-1 induction. Our results show that the PA system is capable to specifically modulate adipogenesis and skeletal myogenesis of ESCs by successive different molecular mechanisms.


Asunto(s)
Adipogénesis/fisiología , Células Madre Embrionarias/fisiología , Desarrollo de Músculos/fisiología , Activadores Plasminogénicos/genética , Activadores Plasminogénicos/metabolismo , Plasminógeno/genética , Plasminógeno/metabolismo , Adipocitos/metabolismo , Animales , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Serpina E2/genética , Serpina E2/metabolismo
17.
J Cell Sci ; 124(Pt 8): 1224-30, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21406565

RESUMEN

Proprotein convertases (PCs) are a family of serine proteases that are involved in the post-translational processing and activation of a wide range of regulatory proteins. The upstream role of PCs in the control of many physiological and pathological processes generates a growing interest in understanding their regulation. Here, we demonstrate that the serine protease inhibitor plasminogen activator inhibitor 1 (PAI-1) forms an SDS-stable complex with the PC furin, which leads to the inhibition of the intra-Golgi activity of furin. It is known that elevated PAI-1 plasma levels are correlated with the occurrence of the metabolic syndrome and type 2 diabetes, and we show that PAI-1 reduces the furin-dependent maturation and activity of the insulin receptor and ADAM17: two proteins involved in the onset of these metabolic disorders. In addition to demonstrating that PAI-1 is an intracellular inhibitor of furin, this study also provides arguments in favor of an active role for PAI-1 in the development of metabolic disorders.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Furina/antagonistas & inhibidores , Furina/metabolismo , Aparato de Golgi/enzimología , Inhibidor 1 de Activador Plasminogénico/metabolismo , Línea Celular , Furina/genética , Aparato de Golgi/metabolismo , Humanos , Espacio Intracelular/enzimología , Espacio Intracelular/genética , Espacio Intracelular/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Unión Proteica , Procesamiento Proteico-Postraduccional
18.
Stem Cells Dev ; 20(7): 1233-46, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20954847

RESUMEN

Embryonic stem (ES) cells differentiate in vitro into all cell lineages. We previously found that the p38 mitogen activated kinase (p38MAPK) pathway controls the commitment of ES cells toward either cardiomyogenesis (p38 on) or neurogenesis (p38 off ). In this study, we show that p38α knock-out ES cells do not differentiate into cardiac, endothelial, smooth muscle, and skeletal muscle lineages. Reexpression of p38MAPK in these cells partially rescues their mesodermal differentiation defects and corrects the high level of spontaneous neurogenesis of knock-out cells. Wild-type ES cells were treated with a p38MAPK-specific inhibitor during the differentiation process. These experiments allowed us to identify 2 early independent successive p38MAPK functions in the formation of mesodermal lineages. Further, the first one correlates with the regulation of the expression of Brachyury, an essential mesodermal-specific transcription factor, by p38MAPK. In conclusion, by genetic and biochemical approaches, we demonstrate that p38MAPK activity is essential for the commitment of ES cell into cardiac, endothelial, smooth muscle, and skeletal muscle mesodermal lineages.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Mesodermo/citología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Animales , Western Blotting , Células Cultivadas , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Imidazoles/farmacología , Mesodermo/metabolismo , Ratones , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Desarrollo de Músculos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
19.
J Biol Chem ; 285(9): 6508-14, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20056610

RESUMEN

Matrix metalloproteinase activity is essential for proper extracellular matrix remodeling that takes place during adipose tissue formation. Four tissue inhibitors of matrix metalloproteinases (TIMPs) regulate their activity. However, the role of TIMPs in adipocyte differentiation is poorly understood. We found that the expression of all TIMPs was modified during adipocyte differentiation, but that of TIMP-3 was distinguished by its extreme down-regulation. TIMP-3 expression was closely linked to the differentiation process. Indeed, it remained low during the adipocyte differentiation but increased when cell differentiation was prevented. We identified the transcription factor Sp1 as being responsible for the regulation of TIMP-3 expression during adipocyte differentiation. Overexpression of TIMP-3 reduced adipocyte differentiation, underlining its active role in this process. TIMP-3 overexpression decreased the expression of the early and obligate key inductors of adipogenesis Krüppel-like factor 4 (Klf4), early growth response 2 (Egr2/Krox20), and CAAT/enhancer-binding protein beta (C/EBPbeta). Our results indicate that during preadipocyte differentiation, the Sp1-dependent decrease in TIMP-3 expression is required for the successful implementation of the adipocyte differentiation program.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/genética , Regulación hacia Abajo/genética , Factor de Transcripción Sp1/fisiología , Inhibidor Tisular de Metaloproteinasa-3/genética , Células 3T3-L1 , Adipogénesis/genética , Animales , Humanos , Factor 4 Similar a Kruppel , Ratones
20.
J Cell Sci ; 118(Pt 5): 1061-70, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15731011

RESUMEN

Binding of tumor necrosis factor-alpha (TNF-alpha) to its transmembrane receptors (TNFRs) mediates proinflammatory, apoptotic and survival responses in several cell types including vascular endothelial cells. Because ectodomain shedding of cell surface molecules can be modified by proteasome activity, we studied in human endothelial cells whether the TNF-alpha-TNFRs axis can be regulated by the cleavage of their transmembrane forms in a proteasome-dependent manner. We show that proteasome inhibition increases the release of TNF-alpha and TNFRs from human endothelial cells and decreases their cellular and cell surface expression. This phenomenon involves the transient activation of mitogen-activated protein kinase p42/p44 that triggers the dispersion of TNF-alpha and TNFRs from their intracellular Golgi-complex-associated pool towards the plasma membrane. This results in their enhanced cleavage by TNF-alpha converting enzyme (TACE) because it is reduced by synthetic metalloprotease inhibitors, recombinant TIMP-3 and by a dominant negative form of TACE. In the presence of TACE inhibitor, proteasome inhibition increases the cell surface expression of TNFRs and enhances the sensitivity of these cells to the proapoptotic effect of recombinant TNF-alpha. In conclusion, our data provide evidence that proteasome inhibitors increase TACE-dependent TNFR-shedding in endothelial cells, supporting the use of these molecules in inflammatory disorders. In association with TACE inhibitor, proteasome inhibitors increase the amount of TNFRs at the cell surface and enhance the sensitivity to the proapoptotic effect of TNF-alpha, which might be of interest in the antitumor therapy.


Asunto(s)
Endotelio/metabolismo , Inhibidores de Proteasoma , Receptores del Factor de Necrosis Tumoral/metabolismo , Proteínas ADAM , Proteína ADAM17 , Antineoplásicos/farmacología , Apoptosis , Transporte Biológico , Caspasa 3 , Caspasas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Endotelio Vascular/citología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Genes Dominantes , Vectores Genéticos , Aparato de Golgi/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Inflamación , Metaloendopeptidasas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...