Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 404, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195739

RESUMEN

The glycosylation of IgG plays a critical role during human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during human acute viral infection. The analysis of IgM N-glycosylation from healthy controls and hospitalized coronavirus disease 2019 (COVID-19) patients reveals increased high-mannose and sialylation that correlates with COVID-19 severity. These trends are confirmed within SARS-CoV-2-specific immunoglobulin N-glycan profiles. Moreover, the degree of total IgM mannosylation and sialylation correlate significantly with markers of disease severity. We link the changes of IgM N-glycosylation with the expression of Golgi glycosyltransferases. Lastly, we observe antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients and modulated by exoglycosidase digestion. Taken together, this work links the IgM N-glycosylation with COVID-19 severity and highlights the need to understand IgM glycosylation and downstream immune function during human disease.


Asunto(s)
COVID-19 , Humanos , Glicosilación , SARS-CoV-2 , Glicosiltransferasas , Proteínas del Sistema Complemento , Inmunoglobulina M
2.
Res Sq ; 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37398192

RESUMEN

The glycosylation of IgG plays a critical role during human SARS-CoV-2, activating immune cells and inducing cytokine production. However, the role of IgM N-glycosylation has not been studied during acute viral infection in humans. In vitro evidence suggests that the glycosylation of IgM inhibits T cell proliferation and alters complement activation rates. The analysis of IgM N-glycosylation from healthy controls and hospitalized COVID-19 patients reveals that mannosylation and sialyation levels associate with COVID-19 severity. Specifically, we find increased di- and tri-sialylated glycans and altered mannose glycans in total serum IgM in severe COVID-19 patients when compared to moderate COVID-19 patients. This is in direct contrast with the decrease of sialic acid found on the serum IgG from the same cohorts. Moreover, the degree of mannosylation and sialylation correlated significantly with markers of disease severity: D-dimer, BUN, creatinine, potassium, and early anti-COVID-19 amounts of IgG, IgA, and IgM. Further, IL-16 and IL-18 cytokines showed similar trends with the amount of mannose and sialic acid present on IgM, implicating these cytokines' potential to impact glycosyltransferase expression during IgM production. When examining PBMC mRNA transcripts, we observe a decrease in the expression of Golgi mannosidases that correlates with the overall reduction in mannose processing we detect in the IgM N-glycosylation profile. Importantly, we found that IgM contains alpha-2,3 linked sialic acids in addition to the previously reported alpha-2,6 linkage. We also report that antigen-specific IgM antibody-dependent complement deposition is elevated in severe COVID-19 patients. Taken together, this work links the immunoglobulin M N-glycosylation with COVID-19 severity and highlights the need to understand the connection between IgM glycosylation and downstream immune function during human disease.

3.
J Neuroimmune Pharmacol ; 16(2): 403-424, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32607691

RESUMEN

Neuroinflammation leads to tissue injury causing many of the clinical symptoms of Multiple Sclerosis, an autoimmune disorder of the central nervous system (CNS). While T cells, specifically Th1 and Th17 cells, are the ultimate effectors of this disease, dendritic cells (DCs) mediate T cell polarization, activation, etc. In our previous study, Apigenin, a natural flavonoid, has been shown to reduce EAE disease severity through amelioration of demyelination in the CNS as well as the sequestering of DCs and other myeloid cells in the periphery. Here, we show that Apigenin exerts its effects possibly through shifting DC modulated T cell responses from Th1 and Th17 type towards Treg directed responses evident through the decrease in T-bet, IFN-γ (Th1), IL-17 (Th17) and increase in IL-10, TGF-ß and FoxP3 (Treg) expression in cells from both normal human donors and EAE mice. RelB, an NF-κß pathway protein is central to DC maturation, its antigen presentation capabilities and DC-mediated T cell activation. Apigenin reduced mRNA and protein levels of RelB and also reduced its nuclear translocation. Additionally, siRNA-mediated silencing of RelB further potentiated the RelB-mediated effects of Apigenin thus confirming its role in Apigenin directed regulation of DC biology. These results provide key information about the molecular events controlled by Apigenin in its regulation of DC activity marking its potential as a therapy for neuroinflammatory disease. Graphical Abstract.


Asunto(s)
Apigenina/farmacología , Células Dendríticas/efectos de los fármacos , Inflamación/inmunología , Activación de Linfocitos/efectos de los fármacos , Factor de Transcripción ReIB/metabolismo , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Humanos , Inflamación/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Factor de Transcripción ReIB/efectos de los fármacos
4.
Tuberc Res Treat ; 2017: 2140974, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29430306

RESUMEN

BACKGROUND: Rifampin malabsorption is frequently observed in tuberculosis patients coinfected with human immunodeficiency virus (HIV) but cannot be predicted by patient factors such as CD4+ T cell count or HIV viral load. METHODS: We sought to describe the relationship between HIV-associated immune activation, measures of gut absorptive capacity and permeability, and rifampin pharmacokinetic parameters in a pilot study of 6 HIV-infected, tuberculosis-uninfected patients who were naïve to antiretroviral therapy. RESULTS: The median rifampin area under the concentration-versus-time curve during the 8-hour observation period was 42.8 mg·hr/L (range: 21.2 to 57.6), with a median peak concentration of 10.1 mg/L (range: 5.3 to 12.5). We observed delayed rifampin absorption, with a time to maximum concentration greater than 2 hours, in 2 of 6 participants. There was a trend towards increased plasma concentrations of sCD14, a marker of monocyte activation in response to bacterial translocation, among participants with delayed rifampin absorption compared to participants with rapid absorption (p = 0.06). CONCLUSIONS: Delayed rifampin absorption may be associated with elevated markers of bacterial translocation among HIV-infected individuals naïve to antiretroviral therapy. This trial is registered with NCT01845298.

5.
Proc Natl Acad Sci U S A ; 110(38): 15413-8, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003154

RESUMEN

Bacterial coinfection represents a major cause of morbidity and mortality in epidemics of influenza A virus (IAV). The bacterium Haemophilus influenzae typically colonizes the human upper respiratory tract without causing disease, and yet in individuals infected with IAV, it can cause debilitating or lethal secondary pneumonia. Studies in murine models have detected immune components involved in susceptibility and pathology, and yet few studies have examined bacterial factors contributing to coinfection. We conducted genome-wide profiling of the H. influenzae genes that promote its fitness in a murine model of coinfection with IAV. Application of direct, high-throughput sequencing of transposon insertion sites revealed fitness phenotypes of a bank of H. influenzae mutants in viral coinfection in comparison with bacterial infection alone. One set of virulence genes was required in nonvirally infected mice but not in coinfection, consistent with a defect in anti-bacterial defenses during coinfection. Nevertheless, a core set of genes required in both in vivo conditions indicated that many bacterial countermeasures against host defenses remain critical for coinfection. The results also revealed a subset of genes required in coinfection but not in bacterial infection alone, including the iron-sulfur cluster regulator gene, iscR, which was required for oxidative stress resistance. Overexpression of the antioxidant protein Dps in the iscR mutant restored oxidative stress resistance and ability to colonize in coinfection. The results identify bacterial stress and metabolic adaptations required in an IAV coinfection model, revealing potential targets for treatment or prevention of secondary bacterial pneumonia after viral infection.


Asunto(s)
Adaptación Biológica/genética , Coinfección/microbiología , Aptitud Genética/genética , Infecciones por Haemophilus/fisiopatología , Haemophilus/genética , Infecciones por Orthomyxoviridae/microbiología , Animales , Coinfección/virología , Elementos Transponibles de ADN/genética , Infecciones por Haemophilus/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de la Influenza A , Pulmón/microbiología , Pulmón/virología , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA