Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
J Biomech Eng ; 146(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38421345

RESUMEN

Despite advancements in elucidating biological mechanisms of cardiovascular remodeling, cardiovascular disease (CVD) remains the leading cause of death worldwide. When stratified by sex, clear differences in CVD prevalence and mortality between males and females emerge. Regional differences in phenotype and biological response of cardiovascular cells are important for localizing the initiation and progression of CVD. Thus, to better understand region and sex differences in CVD presentation, we have focused on characterizing in vitro behaviors of primary vascular smooth muscle cells (VSMCs) from the thoracic and abdominal aorta of male and female mice. VSMC contractility was assessed by traction force microscopy (TFM; single cell) and collagen gel contraction (collective) with and without stimulation by transforming growth factor-beta 1 (TGF-ß1) and cell proliferation was assessed by a colorimetric metabolic assay (MTT). Gene expression and TFM analysis revealed region- and sex-dependent behaviors, whereas collagen gel contraction was consistent across sex and aortic region under baseline conditions. Thoracic VSMCs showed a sex-dependent sensitivity to TGF-ß1-induced collagen gel contraction (female > male; p = 0.025) and a sex-dependent proliferative response (female > male; p < 0.001) that was not apparent in abdominal VSMCs. Although primary VSMCs exhibit intrinsic region and sex differences in biological responses that may be relevant for CVD presentation, several factors-such as inflammation and sex hormones-were not included in this study. Such factors should be included in future studies of in vitro mechanobiological responses relevant to CVD differences in males and females.


Asunto(s)
Enfermedades Cardiovasculares , Factor de Crecimiento Transformador beta1 , Ratones , Femenino , Masculino , Animales , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Músculo Liso Vascular , Aorta Abdominal , Colágeno/metabolismo , Miocitos del Músculo Liso/metabolismo
3.
J Biomech Eng ; 146(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37646627

RESUMEN

Arterial stiffening occurs during natural aging, is associated with an increased risk of adverse cardiovascular events, and can follow different timelines in males and females. One mechanism of arterial stiffening includes remodeling of the extracellular matrix (ECM), which alters the wall material properties. We used elastin haploinsufficient (Eln+/-) and wildtype (Eln+/+) mice to investigate how material properties of two different arteries (ascending aorta and carotid artery) change with age, sex, and ECM composition. We used a constitutive model by Dong and Sun that is based on the Holzapfel-Gasser-Ogden (HGO) type, but does not require a discrete number of fibrous ECM families and allows varied deformation coupling. We find that the amount of deformation coupling for the best fit model depends on the artery type. We also find that remodeling to maintain homeostatic (i.e., young, wildtype) values of biomechanical parameters with age, sex, and ECM composition depends on the artery type, with ascending aorta being more adaptable than carotid artery. Fitted material constants indicate sex-dependent remodeling that may be important for determining the time course of arterial stiffening in males and females. We correlated fitted material constants with ECM composition measured by biochemical (ascending aorta) or histological (carotid artery) methods. We show significant correlations between ECM composition and material parameters for the mean values for each group, with biochemical measurements correlating more strongly than histological measurements. Understanding how arterial stiffening depends on age, sex, ECM composition, and artery type may help design effective, personalized clinical treatment strategies.


Asunto(s)
Aorta , Elastina , Animales , Femenino , Humanos , Masculino , Ratones , Aorta/patología , Arterias Carótidas , Matriz Extracelular , Proteínas de la Matriz Extracelular
4.
Acta Biomater ; 175: 186-198, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151068

RESUMEN

Advanced maternal age during pregnancy is associated with increased risk of vaginal tearing during delivery and maladaptive postpartum healing. Although the underlying mechanisms of age-related vaginal injuries are not fully elucidated, changes in vaginal microstructure may contribute. Smooth muscle cells promote the contractile nature of the vagina and contribute to pelvic floor stability. While menopause is associated with decreased vaginal smooth muscle content, whether contractile changes occur before the onset of menopause remains unknown. Therefore, the first objective of this study was to quantify the active mechanical behavior of the murine vagina with age. Further, aging is associated with decreased vaginal elastin content. As such, the second objective was to determine if elastic fiber disruption alters vaginal contractility. Vaginal samples from mice aged 2-14 months were used in maximum contractility experiments and biaxial extension-inflation protocols. To evaluate the role of elastic fibers with age, half of the vaginal samples were randomly allocated to enzymatic elastic fiber disruption. Contractile potential decreased and vaginal material stiffness increased with age. These age-related changes in smooth muscle function may be due, in part, to changes in microstructural composition or contractile gene expression. Furthermore, elastic fiber disruption had a diminished effect on smooth muscle contractility in older mice. This suggests a decreased functional role of elastic fibers with age. Quantifying the age-dependent mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties provides a first step towards better understanding how age-related changes in vaginal structure may contribute to tissue integrity and healing. STATEMENT OF SIGNIFICANCE: Advanced maternal age at the time of pregnancy is linked to increased risks of vaginal tearing during delivery, postpartum hemorrhaging, and the development of pelvic floor disorders. While the underlying causes of increased vaginal injuries with age and associated pathologies remain unclear, changes in vaginal microstructure, such as elastic fibers and smooth muscle cells, may contribute. Menopause is associated with fragmented elastic fibers and decreased smooth muscle content; however, how reproductive aging affects changes in the vaginal composition and the mechanical properties remains unknown. Quantifying the mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties with age will advance understanding of the potential structural causes of age-related changes to tissue integrity and healing.


Asunto(s)
Tejido Elástico , Vagina , Embarazo , Femenino , Ratones , Animales , Tejido Elástico/metabolismo , Músculo Liso , Miocitos del Músculo Liso , Contracción Muscular/fisiología
6.
Acta Biomater ; 171: 155-165, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797706

RESUMEN

Pulmonary hypertension (PHT) is a devastating disease with low survival rates. In PHT, chronic pressure overload leads to right ventricle (RV) stiffening; thus, impeding diastolic filling. Multiple mechanisms may contribute to RV stiffening, including wall thickening, microstructural disorganization, and myocardial stiffening. The relative importance of each mechanism is unclear. Our objective is to use a large animal model to untangle these mechanisms. Thus, we induced pulmonary arterial hypertension (PAH) in sheep via pulmonary artery banding. After eight weeks, the hearts underwent anatomic and diffusion tensor MRI to characterize wall thickening and microstructural disorganization. Additionally, myocardial samples underwent histological and gene expression analyses to quantify compositional changes and mechanical testing to quantify myocardial stiffening. Finally, we used finite element modeling to disentangle the relative importance of each stiffening mechanism. We found that the RVs of PAH animals thickened most at the base and the free wall and that PAH induced excessive collagen synthesis, increased cardiomyocyte cross-sectional area, and led to microstructural disorganization, consistent with increased expression of fibrotic genes. We also found that the myocardium itself stiffened significantly. Importantly, myocardial stiffening correlated significantly with collagen synthesis. Finally, our computational models predicted that myocardial stiffness contributes to RV stiffening significantly more than other mechanisms. Thus, myocardial stiffening may be the most important predictor for PAH progression. Given the correlation between myocardial stiffness and collagen synthesis, collagen-sensitive imaging modalities may be useful for estimating myocardial stiffness and predicting PAH outcomes. STATEMENT OF SIGNIFICANCE: Ventricular stiffening is a significant contributor to pulmonary hypertension-induced right heart failure. However, the mechanisms that lead to ventricular stiffening are not fully understood. The novelty of our work lies in answering this question through the use of a large animal model in combination with spatially- and directionally sensitive experimental techniques. We find that myocardial stiffness is the primary mechanism that leads to ventricular stiffening. Clinically, this knowledge may be used to improve diagnostic, prognostic, and therapeutic strategies for patients with pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Animales , Ovinos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Ventrículos Cardíacos/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Colágeno/metabolismo , Modelos Animales de Enfermedad
7.
J Biomed Opt ; 28(10): 102902, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37441242

RESUMEN

Significance: Division-of-focal-plane Stokes polarimetry is emerging as a powerful tool for the microstructural characterization of soft tissues. How individual extracellular matrix (ECM) properties influence polarimetric signals in reflectance or transmission modes of quantitative polarized light imaging (QPLI) is not well understood. Aim: We aimed to investigate how ECM properties affect outcomes obtained from division-of-focal-plane polarimetric imaging in reflectance or transmission modes. Approach: Tunable collagen gel phantoms were used to modulate ECM properties of anisotropy, collagen density, crosslinking, and absorber density; the effects of degree of linear polarization (DoLP) and angle of polarization (AoP) on polarimetry outcomes were assessed. A model biological tissue (i.e., bovine tendon) was similarly imaged and evaluated using both reflectance and transmission modes. Results: Reflectance QPLI resulted in decreased DoLP compared with transmission mode. A 90 deg shift in AoP was observed between modes but yielded similar spatial patterns. Collagen density had the largest effect on outcomes besides anisotropy in both imaging modes. Conclusions: Both imaging modes were sufficiently sensitive to detect structural anisotropy differences in gels of varying fiber alignment. Conclusions drawn from phantom experiments should carry over when interpreting data from more complex tissues and can help provide context for interpretation of other Stokes polarimetry data.


Asunto(s)
Colágeno , Diagnóstico por Imagen , Animales , Bovinos , Análisis Espectral , Anisotropía , Fantasmas de Imagen , Colágeno/química
8.
Am J Physiol Heart Circ Physiol ; 323(5): H1037-H1047, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36240434

RESUMEN

The objective of this study was to test the hypothesis that targeting sclerostin would accelerate the progression of aortic valve stenosis. Sclerostin (mouse gene, Sost) is a secreted glycoprotein that acts as a potent regulator of bone remodeling. Antibody therapy targeting sclerostin is approved for osteoporosis but results from a stage III clinical trial showed multiple off-target cardiovascular effects. Wild-type (WT, Sost+/+) and Sost-gene knockout-expression (Null, Sost-/-) mice were generated and maintained to 12 mo of age on a high-cholesterol diet to induce aortic valve stenosis. Mice were examined by echocardiography, histology, and RNAseq. Immortalized valve interstitial cells were developed from each genotype for in vitro studies. Null mice developed a bone overgrowth phenotype, similar to patients with sclerosteosis. Surprisingly, however, WT mice developed hemodynamic signs of aortic valve stenosis, whereas Null mice were unchanged. WT mice had thicker aortic valve leaflets and higher amounts of α-smooth muscle actin, a marker myofibroblast activation and dystrophic calcification, with very little evidence of Runx2 expression, a marker of osteogenic calcification. RNAseq analysis of aortic roots indicated the HOX family of transcription factors was significantly upregulated in Null mice, and valve interstitial cells from Null animals were enriched with Hoxa1, Hoxb2, and Hoxd3 subtypes with downregulated Hoxa7. In addition, Null valve interstitial cells were shown to be less contractile than their WT counterparts. Contrary to our hypothesis, sclerostin targeting prevented hallmarks of aortic valve stenosis and indicates that targeted antibody treatments for osteoporosis may be beneficial for these patients regarding aortic stenosis.NEW & NOTEWORTHY We have found that genetic ablation of the Sost gene (protein: sclerostin) prevents aortic valve stenosis in aged, Western diet mice. This is a new role for sclerostin in the cardiovascular system. To the knowledge of the authors, this is one of the first studies directly manipulating sclerostin in a cardiovascular disease model and the first to specifically study the aortic valve. We also provide a potential new role for Hox genes in cardiovascular disease, noting pan-Hox upregulation in the aortic roots of sclerostin genetic knockouts. The role of Hox genes in postnatal cardiovascular health and disease is another burgeoning field of study to which this article contributes.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Osteoporosis , Ratones , Animales , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/prevención & control , Estenosis de la Válvula Aórtica/diagnóstico , Válvula Aórtica/metabolismo , Ratones Noqueados , Calcinosis/genética , Calcinosis/prevención & control , Osteoporosis/metabolismo , Osteoporosis/patología
10.
Arterioscler Thromb Vasc Biol ; 42(8): 973-986, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35770665

RESUMEN

BACKGROUND: Thoracic aortopathy associates with extracellular matrix remodeling and altered biomechanical properties. We sought to quantify the natural history of thoracic aortopathy in a common mouse model and to correlate measures of wall remodeling such as aortic dilatation or localized mural defects with evolving microstructural composition and biomechanical properties of the wall. METHODS: We combined a high-resolution multimodality imaging approach (panoramic digital image correlation and optical coherence tomography) with histopathologic examinations and biaxial mechanical testing to correlate spatially, for the first time, macroscopic mural defects and medial degeneration within the ascending aorta with local changes in aortic wall composition and mechanical properties. RESULTS: Findings revealed strong correlations between local decreases in elastic energy storage and increases in circumferential material stiffness with increasing proximal aortic diameter and especially mural defect size. Mural defects tended to exhibit a pronounced biomechanical dysfunction that is driven by an altered organization of collagen and elastic fibers. CONCLUSIONS: While aneurysmal dilatation is often observed within particular segments of the aorta, dissection and rupture initiate as highly localized mechanical failures. We show that wall composition and material properties are compromised in regions of local mural defects, which further increases the dilatation and overall structural vulnerability of the wall. Identification of therapies focused on promoting robust collagen accumulation may protect the wall from these vulnerabilities and limit the incidence of dissection and rupture.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Torácica , Animales , Aorta Torácica/patología , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/patología , Fenómenos Biomecánicos , Colágeno , Dilatación , Dilatación Patológica/patología , Ratones
11.
Am J Physiol Heart Circ Physiol ; 322(6): H1080-H1085, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486477

RESUMEN

Postmenopausal women tend to have worse cardiovascular outcomes in a manner that is associated with osteoporosis severity. In this study, we performed the first evaluation of the left ventricle and aortic valve phenotype of ovariectomized mice aged on Western diet to 1 yr. Disease was monitored in vivo using echocardiography and dual X-ray absorptiometry imaging and ex vivo using quantitative histological and immunostaining analysis. Mice had decreased bone mineral density in response to ovariectomy and increased fat mass in response to Western diet. Ovariectomized mice had a significantly increased left ventricle mass compared with control animals, absent of fibrosis. There was a slight increase in aortic valve peak velocity but no change in mean pressure gradient across the valve in the ovariectomy group. There was no evidence of leaflet hypertrophy, fibrosis, or calcification. This model of ovariectomy may present a novel method of studying left ventricle hypertrophy in female populations but does not have a phenotype for the study of aortic stenosis. This is particularly useful as it does not require genetic manipulation or drug treatment and more faithfully mimics aging, high-cholesterol diet, and postmenopausal osteoporosis that many female patients experience potentially resulting in a more translatable disease model.NEW & NOTEWORTHY This article uses in vivo and ex vivo analysis to track the development of osteoporosis and left heart cardiovascular disease in an aged, high-cholesterol diet, mouse ovariectomy model. Mice develop early left ventricle hypertrophy without concurrent fibrosis or aortic valve stenosis. These findings allow for a new model of the study of left ventricle hypertrophy in postmenopausal osteoporosis that more closely mimics the natural progression of disease in female patients.


Asunto(s)
Estenosis de la Válvula Aórtica , Osteoporosis Posmenopáusica , Osteoporosis , Animales , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/complicaciones , Estenosis de la Válvula Aórtica/etiología , Colesterol , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/etiología , Ratones , Osteoporosis/complicaciones , Osteoporosis/etiología , Osteoporosis Posmenopáusica/complicaciones , Osteoporosis Posmenopáusica/patología , Ovariectomía
12.
Int J Numer Method Biomed Eng ; 37(12): e3535, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605615

RESUMEN

Quantitative estimation of local mechanical properties remains critically important in the ongoing effort to elucidate how blood vessels establish, maintain, or lose mechanical homeostasis. Recent advances based on panoramic digital image correlation (pDIC) have made high-fidelity 3D reconstructions of small-animal (e.g., murine) vessels possible when imaged in a variety of quasi-statically loaded configurations. While we have previously developed and validated inverse modeling approaches to translate pDIC-measured surface deformations into biomechanical metrics of interest, our workflow did not heretofore include a methodology to quantify uncertainties associated with local point estimates of mechanical properties. This limitation has compromised our ability to infer biomechanical properties on a subject-specific basis, such as whether stiffness differs significantly between multiple material locations on the same vessel or whether stiffness differs significantly between multiple vessels at a corresponding material location. In the present study, we have integrated a novel uncertainty quantification and propagation pipeline within our inverse modeling approach, relying on empirical and analytic Bayesian techniques. To demonstrate the approach, we present illustrative results for the ascending thoracic aorta from three mouse models, quantifying uncertainties in constitutive model parameters as well as circumferential and axial tangent stiffness. Our extended workflow not only allows parameter uncertainties to be systematically reported, but also facilitates both subject-specific and group-level statistical analyses of the mechanics of the vessel wall.


Asunto(s)
Aorta , Animales , Teorema de Bayes , Fenómenos Biomecánicos , Ratones , Estrés Mecánico , Incertidumbre
13.
J R Soc Interface ; 18(180): 20210336, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314650

RESUMEN

Hypertension induces significant aortic remodelling, often adaptive but sometimes not. To identify immuno-mechanical mechanisms responsible for differential remodelling, we studied thoracic aortas from 129S6/SvEvTac and C57BL/6 J mice before and after continuous 14-day angiotensin II infusion, which elevated blood pressure similarly in both strains. Histological and biomechanical assessments of excised vessels were similar at baseline, suggesting a common homeostatic set-point for mean wall stress. Histology further revealed near mechano-adaptive remodelling of the hypertensive 129S6/SvEvTac aortas, but a grossly maladaptive remodelling of C57BL/6 J aortas. Bulk RNA sequencing suggested that increased smooth muscle contractile processes promoted mechano-adaptation of 129S6/SvEvTac aortas while immune processes prevented adaptation of C57BL/6 J aortas. Functional studies confirmed an increased vasoconstrictive capacity of the former while immunohistochemistry demonstrated marked increases in inflammatory cells in the latter. We then used multiple computational biomechanical models to test the hypothesis that excessive adventitial wall stress correlates with inflammatory cell infiltration. These models consistently predicted that increased vasoconstriction against an increased pressure coupled with modest deposition of new matrix thickens the wall appropriately, restoring wall stress towards homeostatic consistent with adaptive remodelling. By contrast, insufficient vasoconstriction permits high wall stresses and exuberant inflammation-driven matrix deposition, especially in the adventitia, reflecting compromised homeostasis and gross maladaptation.


Asunto(s)
Adventicia , Hipertensión , Adventicia/patología , Animales , Aorta/patología , Aorta Torácica/patología , Modelos Animales de Enfermedad , Fibrosis , Hipertensión/patología , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/patología
14.
J Cell Sci ; 134(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33526716

RESUMEN

Circulating tumor cells (CTCs) are exposed to fluid shear stress (FSS) of greater than 1000 dyn/cm2 (100 Pa) in circulation. Normally, CTCs that are exposed to FSS of this magnitude die. However, some CTCs develop resistance to this FSS, allowing them to colonize distant organs. We explored how prostate CTCs can resist cell death in response to forces of this magnitude. The DU145, PC3 and LNCaP human prostate cancer cell lines were used to represent cells of different metastatic origins. The cell lines were briefly treated with an average FSS of 3950 dyn/cm2 (395 Pa) using a 30 G needle and a syringe pump. DU145 cells had no change in cell viability, PC3 cells had some cell death and LNCaP cells exhibited significant cell death. These cell death responses correlated with increased cell membrane damage, less efficient membrane repair and increased stiffness. Additionally, FSS treatment prevented the LNCaP FSS-sensitive cell line from forming a growing tumor in vivo This suggests that these properties play a role in FSS resistance and could represent potential targets for disrupting blood-borne metastasis.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias de la Próstata , Muerte Celular , Línea Celular Tumoral , Humanos , Masculino , Estrés Mecánico
15.
Circulation ; 143(13): 1317-1330, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33474971

RESUMEN

BACKGROUND: Myocardial infarction (MI) induces an intense injury response that ultimately generates a collagen-dominated scar. Although required to prevent ventricular rupture, the fibrotic process is often sustained in a manner detrimental to optimal recovery. Cardiac myofibroblasts are the cells tasked with depositing and remodeling collagen and are a prime target to limit the fibrotic process after MI. Serotonin 2B receptor (5-HT2B) signaling has been shown to be harmful in a variety of cardiopulmonary pathologies and could play an important role in mediating scar formation after MI. METHODS: We used 2 pharmacological antagonists to explore the effect of 5-HT2B inhibition on outcomes after MI and characterized the histological and microstructural changes involved in tissue remodeling. Inducible 5-HT2B ablation driven by Tcf21MCM and PostnMCM was used to evaluate resident cardiac fibroblast- and myofibroblast-specific contributions of 5-HT2B, respectively. RNA sequencing was used to motivate subsequent in vitro analyses to explore cardiac fibroblast phenotype. RESULTS: 5-HT2B antagonism preserved cardiac structure and function by facilitating a less fibrotic scar, indicated by decreased scar thickness and decreased border zone area. 5-HT2B antagonism resulted in collagen fiber redistribution to thinner collagen fibers that were more anisotropic, enhancing left ventricular contractility, whereas fibrotic tissue stiffness was decreased, limiting the hypertrophic response of uninjured cardiomyocytes. Using a tamoxifen-inducible Cre, we ablated 5-HT2B from Tcf21-lineage resident cardiac fibroblasts and saw similar improvements to the pharmacological approach. Tamoxifen-inducible Cre-mediated ablation of 5-HT2B after onset of injury in Postn-lineage myofibroblasts also improved cardiac outcomes. RNA sequencing and subsequent in vitro analyses corroborate a decrease in fibroblast proliferation, migration, and remodeling capabilities through alterations in Dnajb4 expression and Src phosphorylation. CONCLUSIONS: Together, our findings illustrate that 5-HT2B expression in either cardiac fibroblasts or activated myofibroblasts directly contributes to excessive scar formation, resulting in adverse remodeling and impaired cardiac function after MI.


Asunto(s)
Fibrosis/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Antagonistas del Receptor de Serotonina 5-HT2/uso terapéutico , Animales , Femenino , Humanos , Ratones , Ratones Noqueados , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Transducción de Señal
16.
PLoS One ; 15(11): e0238407, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33237915

RESUMEN

Calcific aortic valve disease (CAVD) is a deadly disease that is rising in prevalence due to population aging. While the disease is complex and poorly understood, one well-documented driver of valvulopathy is serotonin agonism. Both serotonin overexpression, as seen with carcinoid tumors and drug-related agonism, such as with Fenfluramine use, are linked with various diseases of the valves. Thus, the objective of this study was to determine if genetic ablation or pharmacological antagonism of the 5-HT2B serotonin receptor (gene: Htr2b) could improve the hemodynamic and histological progression of calcific aortic valve disease. Htr2b mutant mice were crossed with Notch1+/- mice, an established small animal model of CAVD, to determine if genetic ablation affects CAVD progression. To assess the effect of pharmacological inhibition on CAVD progression, Notch1+/- mice were treated with the 5-HT2B receptor antagonist SB204741. Mice were analyzed using echocardiography, histology, immunofluorescence, and real-time quantitative polymerase chain reaction. Htr2b mutant mice showed lower aortic valve peak velocity and mean pressure gradient-classical hemodynamic indicators of aortic valve stenosis-without concurrent left ventricle change. 5-HT2B receptor antagonism, however, did not affect hemodynamic progression. Leaflet thickness, collagen density, and CAVD-associated transcriptional markers were not significantly different in any group. This study reveals that genetic ablation of Htr2b attenuates hemodynamic development of CAVD in the Notch1+/- mice, but pharmacological antagonism may require high doses or long-term treatment to slow progression.


Asunto(s)
Válvula Aórtica/patología , Colesterol/metabolismo , Hemodinámica/genética , Receptor Notch1/genética , Receptor de Serotonina 5-HT2B/genética , Animales , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , Calcinosis/genética , Calcinosis/patología , Dieta , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ecocardiografía/métodos , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/patología , Hemodinámica/fisiología , Hipercolesterolemia/genética , Hipercolesterolemia/patología , Hiperlipidemias/genética , Hiperlipidemias/patología , Ratones
17.
Cytoskeleton (Hoboken) ; 77(9): 342-350, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32885903

RESUMEN

The coordinated generation of mechanical forces by cardiac myocytes is required for proper heart function. Myofibrils are the functional contractile units of force production within individual cardiac myocytes. At the molecular level, myosin motors form cross-bridges with actin filaments and use ATP to convert chemical energy into mechanical forces. The energetic efficiency of the cross-bridge cycle is influenced by the viscous damping of myofibril contraction. The viscoelastic response of myofibrils is an emergent property of their individual mechanical components. Previous studies have implicated titin-actin interactions, cell-ECM adhesion, and microtubules as regulators of the viscoelastic response of myofibrils. Here we probed the viscoelastic response of myofibrils using laser-assisted dissection. As a proof-of-concept, we found actomyosin contractility was required to endow myofibrils with their viscoelastic response, with blebbistatin treatment resulting in decreased myofibril tension and viscous damping. Focal adhesion kinase (FAK) is a key regulator of cell-ECM adhesion, microtubule stability, and myofibril assembly. We found inhibition of FAK signaling altered the viscoelastic properties of myofibrils. Specifically, inhibition of FAK resulted in increased viscous damping of myofibril retraction following laser ablation. This damping was not associated with acute changes in the electrophysiological properties of cardiac myocytes. These results implicate FAK as a regulator of mechanical properties of myofibrils.


Asunto(s)
Adhesiones Focales/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Humanos , Viscosidad
18.
Sci Rep ; 10(1): 9244, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514185

RESUMEN

Chronic infusion of angiotensin-II in atheroprone (ApoE-/-) mice provides a reproducible model of dissection in the suprarenal abdominal aorta, often with a false lumen and intramural thrombus that thickens the wall. Such lesions exhibit complex morphologies, with different regions characterized by localized changes in wall composition, microstructure, and properties. We sought to quantify the multiaxial mechanical properties of murine dissecting aneurysm samples by combining in vitro extension-distension data with full-field multimodality measurements of wall strain and thickness to inform an inverse material characterization using the virtual fields method. A key advance is the use of a digital volume correlation approach that allows for characterization of properties not only along and around the lesion, but also across its wall. Specifically, deformations are measured at the adventitial surface by tracking motions of a speckle pattern using a custom panoramic digital image correlation technique while deformations throughout the wall and thrombus are inferred from optical coherence tomography. These measurements are registered and combined in 3D to reconstruct the reference geometry and compute the 3D finite strain fields in response to pressurization. Results reveal dramatic regional variations in material stiffness and strain energy, which reflect local changes in constituent area fractions obtained from histology but emphasize the complexity of lesion morphology and damage within the dissected wall. This is the first point-wise biomechanical characterization of such complex, heterogeneous arterial segments. Because matrix remodeling is critical to the formation and growth of these lesions, we submit that quantification of regional material properties will increase the understanding of pathological mechanical mechanisms underlying aortic dissection.


Asunto(s)
Disección Aórtica/diagnóstico por imagen , Imagen Multimodal , Disección Aórtica/patología , Disección Aórtica/fisiopatología , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Masculino , Ratones , Tomografía de Coherencia Óptica , Rigidez Vascular
19.
Arterioscler Thromb Vasc Biol ; 40(6): e153-e165, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32295422

RESUMEN

OBJECTIVE: Macrophages have been described in calcific aortic valve disease, but it is unclear if they promote or counteract calcification. We aimed to determine how macrophages are involved in calcification using the Notch1+/- model of calcific aortic valve disease. Approach and Results: Macrophages in wild-type and Notch1+/- murine aortic valves were characterized by flow cytometry. Macrophages in Notch1+/- aortic valves had increased expression of MHCII (major histocompatibility complex II). We then used bone marrow transplants to test if differences in Notch1+/- macrophages drive disease. Notch1+/- mice had increased valve thickness, macrophage infiltration, and proinflammatory macrophage maturation regardless of transplanted bone marrow genotype. In vitro approaches confirm that Notch1+/- aortic valve cells promote macrophage invasion as quantified by migration index and proinflammatory phenotypes as quantified by Ly6C and CCR2 positivity independent of macrophage genotype. Finally, we found that macrophage interaction with aortic valve cells promotes osteogenic, but not dystrophic, calcification and decreases abundance of the STAT3ß isoform. CONCLUSIONS: This study reveals that Notch1+/- aortic valve disease involves increased macrophage recruitment and maturation driven by altered aortic valve cell secretion, and that increased macrophage recruitment promotes osteogenic calcification and alters STAT3 splicing. Further investigation of STAT3 and macrophage-driven inflammation as therapeutic targets in calcific aortic valve disease is warranted.


Asunto(s)
Estenosis de la Válvula Aórtica/patología , Válvula Aórtica/patología , Calcinosis/patología , Macrófagos/fisiología , Factor de Transcripción STAT3/fisiología , Animales , Válvula Aórtica/inmunología , Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/inmunología , Estenosis de la Válvula Aórtica/fisiopatología , Trasplante de Médula Ósea , Calcinosis/inmunología , Calcinosis/fisiopatología , Movimiento Celular , Óxidos S-Cíclicos/farmacología , Modelos Animales de Enfermedad , Expresión Génica , Genotipo , Humanos , Inflamación/patología , Macrófagos/química , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis , Receptor Notch1/análisis , Receptor Notch1/genética , Receptor Notch1/fisiología , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética
20.
Cell Rep ; 31(1): 107477, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268086

RESUMEN

The mechanical properties of the actin cortex regulate shape changes during cell division, cell migration, and tissue morphogenesis. We show that modulation of myosin II (MII) filament composition allows tuning of surface tension at the cortex to maintain cell shape during cytokinesis. Our results reveal that MIIA generates cortex tension, while MIIB acts as a stabilizing motor and its inclusion in MII hetero-filaments reduces cortex tension. Tension generation by MIIA drives faster cleavage furrow ingression and bleb formation. We also show distinct roles for the motor and tail domains of MIIB in maintaining cytokinetic fidelity. Maintenance of cortical stability by the motor domain of MIIB safeguards against shape instability-induced chromosome missegregation, while its tail domain mediates cortical localization at the terminal stages of cytokinesis to mediate cell abscission. Because most non-muscle contractile systems are cortical, this tuning mechanism will likely be applicable to numerous processes driven by myosin-II contractility.


Asunto(s)
Forma de la Célula/fisiología , Citocinesis/fisiología , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actinas/fisiología , Animales , Células COS , División Celular , Movimiento Celular , Chlorocebus aethiops , Proteínas del Citoesqueleto/metabolismo , Células HeLa , Humanos , Morfogénesis , Contracción Muscular , Miosina Tipo II/fisiología , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA