Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888973

RESUMEN

We report that diazepam binding inhibitor (DBI) is a glial messenger mediating satellite glia-sensory neuron crosstalk in the dorsal root ganglion (DRG). DBI is highly expressed in satellite glia cells (SGCs) of mice, rat and human, but not in sensory neurons or most other DRG-resident cells. Knockdown of DBI results in a robust mechanical hypersensitivity without major effects on other sensory modalities. In vivo overexpression of DBI in SGCs reduces sensitivity to mechanical stimulation and alleviates mechanical allodynia in neuropathic and inflammatory pain models. We further show that DBI acts as an unconventional agonist and positive allosteric modulator at the neuronal GABAA receptors, particularly strongly effecting those with a high-affinity benzodiazepine binding site. Such receptors are selectively expressed by a subpopulation of mechanosensitive DRG neurons and these are also more enwrapped with DBI-expressing glia, as compared to other DRG neurons, suggesting a mechanism for specific effect of DBI on mechanosensation. These findings identified a new, peripheral neuron-glia communication mechanism modulating pain signalling, which can be targeted therapeutically.

2.
Res Sq ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798444

RESUMEN

Hormonal regulation during food ingestion and its association with pain prompted the investigation of the impact of glucagon-like peptide-1 (GLP-1) on the transient receptor potential vanilloid 1 (TRPV1). Both endogenous and synthetic GLP-1 and an antagonist of GLP-1, exendin 9-39, reduced heat sensitivity in naïve mice. GLP-1-derived peptides (liraglutide, exendin-4, and exendin 9-39) effectively inhibited capsaicin (CAP)-induced currents and calcium responses in cultured sensory neurons and TRPV1-expressing cell lines. Notably, the exendin 9-39 alleviated CAP-induced acute pain, as well as chronic pain induced by complete Freund's adjuvant (CFA) and spared nerve injury (SNI) in mice, without causing hyperthermia associated with other TRPV1 inhibitors. Electrophysiological analyses revealed that exendin 9-39 binds to the extracellular side of TRPV1, functioning as a noncompetitive inhibitor of CAP. Exendin 9-39 did not affect proton-induced TRPV1 activation, suggesting its selective antagonism. Among exendin 9-39 fragments, exendin 20-29 specifically binds to TRPV1, alleviating pain in both acute and chronic pain models without interfering with GLP-1R function. Our study revealed a novel role for GLP-1 and its derivatives in pain relief, proposing exendin 20-29 as a promising therapeutic candidate.

3.
J Clin Invest ; 134(9)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530364

RESUMEN

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.


Asunto(s)
Ácidos Docosahexaenoicos , Ganglios Espinales , Neuroglía , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Ganglios Espinales/metabolismo , Homeostasis , Ratones Noqueados , Ratones Transgénicos , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/patología , Neuroglía/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
4.
Pain ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38452223

RESUMEN

ABSTRACT: Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 µg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. Patch-clamp recordings also demonstrated enhanced excitatory synaptic transmission (miniature excitatory postsynaptic currents [EPSCs]) in spinal nociceptive neurons following let-7b perfusion or optogenetic activation of axonal terminals. The elevation in spinal calcium signaling and EPSCs was dependent on the presence of toll-like receptor-7 (TLR7) and transient receptor potential ion channel subtype A1 (TRPA1). In addition, endogenous let-7b is enriched in spinal cord synaptosome, and peripheral inflammation increased let-7b in doral root ganglion/dorsal root ganglia neurons, spinal cord tissue, and the cerebrospinal fluid. Notably, let-7b antagomir inhibited inflammatory pain and inflammation-induced synaptic plasticity (EPSC increase), suggesting an endogenous role of let-7b in regulating pain and synaptic transmission. Furthermore, intrathecal injection of let-7b, at a higher dose (10 µg), induced persistent mechanical allodynia for >2 weeks, which was abolished in Tlr7-/- mice. The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.

5.
Brain Behav Immun ; 117: 51-65, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38190983

RESUMEN

Microglia, resident immune cells in the central nervous system, play a role in neuroinflammation and the development of neuropathic pain. We found that the stimulator of interferon genes (STING) is predominantly expressed in spinal microglia and upregulated after peripheral nerve injury. However, mechanical allodynia, as a marker of neuropathic pain following peripheral nerve injury, did not require microglial STING expression. In contrast, STING activation by specific agonists (ADU-S100, 35 nmol) significantly alleviated neuropathic pain in male mice, but not female mice. STING activation in female mice leads to increase in proinflammatory cytokines that may counteract the analgesic effect of ADU-S100. Microglial STING expression and type I interferon-ß (IFN-ß) signaling were required for the analgesic effects of STING agonists in male mice. Mechanistically, downstream activation of TANK-binding kinase 1 (TBK1) and the production of IFN-ß, may partly account for the analgesic effect observed. These findings suggest that STING activation in spinal microglia could be a potential therapeutic intervention for neuropathic pain, particularly in males.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Animales , Femenino , Masculino , Ratones , Analgésicos , Anticuerpos , Microglía , Traumatismos de los Nervios Periféricos/complicaciones
6.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045227

RESUMEN

We report that diazepam binding inhibitor (DBI) is a glial messenger mediating satellite glia-sensory neuron crosstalk in the dorsal root ganglion (DRG). DBI is highly and specifically expressed in satellite glia cells (SGCs) of mice, rat and human, but not in sensory neurons or other DRG-resident cells. Knockdown of DBI results in a robust mechanical hypersensitivity without significant effects on other sensory modalities. In vivo overexpression of DBI in SGCs reduces sensitivity to mechanical stimulation and alleviates mechanical allodynia in neuropathic and inflammatory pain models. We further show that DBI acts as a partial agonist and positive allosteric modulator at the neuronal GABAA receptors, particularly strongly effecting those with a high-affinity benzodiazepine binding site. Such receptors are selectively expressed by a subpopulation of mechanosensitive DRG neurons and these are also more enwrapped with DBI-expressing glia, as compared to other DRG neurons, suggesting a mechanism for specific effect of DBI on mechanosensation. These findings identified a new, peripheral neuron-glia communication mechanism modulating pain signalling, which can be targeted therapeutically.

7.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106084

RESUMEN

G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.

8.
Bio Protoc ; 13(24): e4906, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38156033

RESUMEN

Satellite glial cells (SGCs) are a type of glial cell population that originates from neural crest cells. They ultimately migrate to surround the cell bodies of neurons in the ganglia of the peripheral nervous system. Under physiological conditions, SGCs perform homeostatic functions by modifying the microenvironment around nearby neurons and provide nutrients, structure, and protection. In recent years, they have gained considerable attention due to their involvement in peripheral nerve regeneration and pain. Although methods for culturing neonatal or rat SGCs have long existed, a well-characterized method for dissociating and culturing adult SGCs from mouse tissues has been lacking until recently. This has impeded further studies of their function and the testing of new therapeutics. This protocol provides a detailed description of how to obtain primary cultures of adult SGCs from mouse dorsal root ganglia in approximately two weeks with over 90% cell purity. We also demonstrate cell purity of these cultures using quantitative real-time RT-PCR and their functional integrity using calcium imaging. Key features • Detailed and simplified protocol to dissociate and culture primary satellite glial cells (SGCs) from adult mice. • Cells are dissociated in approximately 2-3 h and cultured for approximately two weeks. • These SGC cultures allow both molecular and functional studies.

9.
Brain Behav Immun ; 113: 401-414, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37557960

RESUMEN

Satellite glial cells (SGCs) are among the most abundant non-neuronal cells in dorsal root ganglia (DRGs) and closely envelop sensory neurons that detect painful stimuli. However, little is still known about their homeostatic activities and their contribution to pain. Using single-cell RNA sequencing (scRNA-seq), we were able to obtain a unique transcriptional profile for SGCs. We found enriched expression of the tissue inhibitor metalloproteinase 3 (TIMP3) and other metalloproteinases in SGCs. Small interfering RNA and neutralizing antibody experiments revealed that TIMP3 modulates somatosensory stimuli. TIMP3 expression decreased after paclitaxel treatment, and its rescue by delivery of a recombinant TIMP3 protein reversed and prevented paclitaxel-induced pain. We also established that paclitaxel directly impacts metalloproteinase signaling in cultured SGCs, which may be used to identify potential new treatments for pain. Therefore, our results reveal a metalloproteinase signaling pathway in SGCs for proper processing of somatosensory stimuli and potential discovery of novel pain treatments.


Asunto(s)
Ganglios Espinales , Neuroglía , Humanos , Ganglios Espinales/metabolismo , Neuroglía/metabolismo , Dolor/metabolismo , Transducción de Señal , Células Receptoras Sensoriales , Análisis de la Célula Individual
10.
Expert Opin Ther Targets ; 27(8): 665-678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574713

RESUMEN

INTRODUCTION: Current treatments for chronic pain are inadequate. Here, we provide an update on the new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. AREAS COVERED: Despite the complex nature of chronic pain and its underlying mechanisms, we do know that changes in the plasticity and modality of neurons in DRGs play a pivotal role. DRG neurons are heterogenous and offer potential pain targets for different therapeutic interventions. We discuss the last advancements of these interventions, which include the use of systemic and local administrations, selective nerve drug delivery, and gene therapy. In particular, we provide updates and further details on the molecular characterization of primary sensory neurons, new analgesics entering the market, and future gene therapy approaches. EXPERT OPINION: DRGs and primary sensory neurons are promising targets for chronic pain treatment due to their key role in pain signaling, unique anatomical location, and the potential for different targeted therapeutic interventions.


Asunto(s)
Dolor Crónico , Humanos , Dolor Crónico/tratamiento farmacológico , Ganglios Espinales , Analgésicos , Células Receptoras Sensoriales
11.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175602

RESUMEN

Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.


Asunto(s)
Trastornos Migrañosos , Canales de Potencial de Receptor Transitorio , Humanos , Nociceptores/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Ganglio del Trigémino/metabolismo , Dolor/metabolismo
12.
Neurosci Bull ; 39(9): 1363-1374, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37165177

RESUMEN

Although sympathetic blockade is clinically used to treat pain, the underlying mechanisms remain unclear. We developed a localized microsympathectomy (mSYMPX), by cutting the grey rami entering the spinal nerves near the rodent lumbar dorsal root ganglia (DRG). In a chemotherapy-induced peripheral neuropathy model, mSYMPX attenuated pain behaviors via DRG macrophages and the anti-inflammatory actions of transforming growth factor-ß (TGF-ß) and its receptor TGF-ßR1. Here, we examined the role of TGF-ß in sympathetic-mediated radiculopathy produced by local inflammation of the DRG (LID). Mice showed mechanical hypersensitivity and transcriptional and protein upregulation of TGF-ß1 and TGF-ßR1 three days after LID. Microsympathectomy prevented mechanical hypersensitivity and further upregulated Tgfb1 and Tgfbr1. Intrathecal delivery of TGF-ß1 rapidly relieved the LID-induced mechanical hypersensitivity, and TGF-ßR1 antagonists rapidly unmasked the mechanical hypersensitivity after LID+mSYMPX. In situ hybridization showed that Tgfb1 was largely expressed in DRG macrophages, and Tgfbr1 in neurons. We suggest that TGF-ß signaling is a general underlying mechanism of local sympathetic blockade.


Asunto(s)
Radiculopatía , Factor de Crecimiento Transformador beta , Ratones , Animales , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Hiperalgesia/metabolismo , Radiculopatía/tratamiento farmacológico , Radiculopatía/metabolismo , Dolor/metabolismo , Analgésicos/farmacología , Ganglios Espinales/metabolismo
13.
Neurosci Lett ; 787: 136822, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35934164

RESUMEN

Failure to translate promising potential therapeutics for intracerebral hemorrhage (ICH) partially results from limited understanding of cellular mechanisms underlying brain injury and repair. Understanding neural repair mechanisms after brain injury requires intricate comprehension of microglial behavior; however, studying individual microglial cell behavior is challenging. Further single cell isolation techniques may be an excellent means to expand known differences in male and female microglial cell response to ICH. In this study, 24 h after intrastriatal collagenase injection, one male and one female CX3CR1-GFP mouse underwent ex vivo microglial cell isolation via micropipette from perihematomal regions and equivalent location of contralateral striata. After cell collection, individual and grouped cell samples underwent reverse transcription and analyses for gene expression using Fluidigm RT-PCR technology. Data were analyzed by t-tests and visualized as a heatmap of the log2 Ct values. Gene expression assays were chosen for target-specific amplification, including markers of M1 pro-inflammatory microglial phenotype (i.e., Tnf, Il6, Fcgr3/CD16), M2 anti-inflammatory markers (i.e., Mrc1/CD206, Arg1, Tgfb1), and genes involved in the toll-like receptor pathway (i.e., Tlr2, Tlr4 and Myd88). Greater number of individual microglia cells expressed Mcr1, Tlr2, and Arg1 in perihematomal tissue than in contralateral hemispheres. Additionally, more male microglia expressed Myd88, Tlr2, Il6, and Arg1 than did female microglia. Single cell microglial isolation is feasible after in vivo rodent ICH. Differential gene expression can be detected between individual cells from different brain regions and experimental conditions. Cell-specific analyses will contribute to improved understanding of microglial roles in both post-ICH pathogenesis and recovery.


Asunto(s)
Lesiones Encefálicas , Microglía , Animales , Lesiones Encefálicas/metabolismo , Separación Celular , Hemorragia Cerebral/metabolismo , Femenino , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 2
14.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628583

RESUMEN

The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.


Asunto(s)
Toxinas Biológicas , Ponzoñas , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Desarrollo de Medicamentos , Dolor/tratamiento farmacológico , Péptidos/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Canales Catiónicos TRPV/metabolismo , Ponzoñas/farmacología , Ponzoñas/uso terapéutico
15.
J Neurosci ; 42(9): 1820-1844, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34992132

RESUMEN

Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the progressive hydrocephalus (prh) mutant which contains a point mutation in the Ccdc39 gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal prh mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the prh mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in prh mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the prh mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus.SIGNIFICANCE STATEMENT In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse prh genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the prh mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.


Asunto(s)
Hidrocefalia , Microglía , Animales , Animales Recién Nacidos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Humanos , Hidrocefalia/tratamiento farmacológico , Indazoles , Ratones , Embarazo , Propionatos
16.
Front Mol Neurosci ; 14: 772719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776867

RESUMEN

Pain afflicts more than 1.5 billion people worldwide, with hundreds of millions suffering from unrelieved chronic pain. Despite widespread recognition of the importance of developing better interventions for the relief of chronic pain, little is known about the mechanisms underlying this condition. However, transient receptor potential (TRP) ion channels in nociceptors have been shown to be essential players in the generation and progression of pain and have attracted the attention of several pharmaceutical companies as therapeutic targets. Unfortunately, TRP channel inhibitors have failed in clinical trials, at least in part due to their thermoregulatory function. Botulinum neurotoxins (BoNTs) have emerged as novel and safe pain therapeutics because of their regulation of exocytosis and pro-nociceptive neurotransmitters. However, it is becoming evident that BoNTs also regulate the expression and function of TRP channels, which may explain their analgesic effects. Here, we summarize the roles of TRP channels in pain, with a particular focus on TRPV1 and TRPA1, their regulation by BoNTs, and briefly discuss the use of BoNTs for the treatment of chronic pain.

17.
Front Mol Neurosci ; 14: 765181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790097

RESUMEN

Migraine is a common neurological disorder with few available treatment options. Recently, we have demonstrated the role of transient receptor potential cation channel subfamily C member 4 (TRPC4) in itch and the modulation of the calcitonin gene-related peptide (CGRP), a biomarker and emerging therapeutic target for migraine. In this study, we characterized the role of TRPC4 in pain and evaluated its inhibition as anti-migraine pain therapy in preclinical mouse models. First, we found that TRPC4 is highly expressed in trigeminal ganglia and its activation not only mediates itch but also pain. Second, we demonstrated that the small-molecule inhibitor ML204, a specific TRPC4 antagonist, significantly reduced episodic and chronic migraine-like behaviors in male and female mice after injection of nitroglycerin (NTG), a well-known migraine inducer in rodents and humans. Third, we found a significant decrease in CGRP protein levels in the plasma of both male and female mice treated with ML-204, which largely prevented the development of chronic migraine-like behavior. Using sensory neuron cultures, we confirmed that activation of TRPC4 elicited release of CGRP, which was significantly diminished by ML-204. Collectively, our findings identify TRPC4 in peripheral sensory neurons as a mediator of CGRP release and NTG-evoked migraine. Since a TRPC4 antagonist is already in clinical trials, we expect that this study will rapidly lead to novel and effective clinical treatments for migraineurs.

18.
Neuron ; 109(17): 2691-2706.e5, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473953

RESUMEN

Although sex dimorphism is increasingly recognized as an important factor in pain, female-specific pain signaling is not well studied. Here we report that administration of IL-23 produces mechanical pain (mechanical allodynia) in female but not male mice, and chemotherapy-induced mechanical pain is selectively impaired in female mice lacking Il23 or Il23r. IL-23-induced pain is promoted by estrogen but suppressed by androgen, suggesting an involvement of sex hormones. IL-23 requires C-fiber nociceptors and TRPV1 to produce pain but does not directly activate nociceptor neurons. Notably, IL-23 requires IL-17A release from macrophages to evoke mechanical pain in females. Low-dose IL-17A directly activates nociceptors and induces mechanical pain only in females. Finally, deletion of estrogen receptor subunit α (ERα) in TRPV1+ nociceptors abolishes IL-23- and IL-17-induced pain in females. These findings demonstrate that the IL-23/IL-17A/TRPV1 axis regulates female-specific mechanical pain via neuro-immune interactions. Our study also reveals sex dimorphism at both immune and neuronal levels.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Macrófagos/metabolismo , Dolor Nociceptivo/metabolismo , Nociceptores/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Interleucina-17/farmacología , Interleucina-23/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas Amielínicas/metabolismo , Fibras Nerviosas Amielínicas/fisiología , Dolor Nociceptivo/fisiopatología , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Factores Sexuales , Transducción de Señal
19.
Brain Behav Immun ; 91: 556-567, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197543

RESUMEN

Chronic low back pain is a common condition, with high societal costs and often ineffectual treatments. Communication between macrophages/monocytes (MØ) and sensory neurons has been implicated in various preclinical pain models. However, few studies have examined specific MØ subsets, although distinct subtypes may play opposing roles. This study used a model of low back pain/radiculopathy involving direct local inflammation of the dorsal root ganglia (DRG). Reporter mice were employed that had distinct fluorescent labels for two key MØ subsets: CCR2-expressing (infiltrating pro-inflammatory) MØ, and CX3CR1-expressing (resident) macrophages. We observed that local DRG inflammation induced pain behaviors in mice, including guarding behavior and mechanical hypersensitivity, similar to the previously described rat model. The increase in MØ in the inflamed DRG was dominated by increases in CCR2+ MØ, which persisted for at least 14 days. The primary endogenous ligand for CCR2, CCL2, was upregulated in inflamed DRG. Three different experimental manipulations that reduced the CCR2+ MØ influx also reduced pain behaviors: global CCR2 knockout; systemic injection of INCB3344 (specific CCR2 blocker); and intravenous injection of liposomal clodronate. The latter two treatments when applied around the time of DRG inflammation reduced CCR2+ but not CX3CR1+ MØ in the DRG. Together these experiments suggest a key role for the CCR2/CCL2 system in establishing the pain state in this model of inflammatory low back pain and radiculopathy. Intravenous clodronate given after pain was established had the opposite effect on pain behaviors, suggesting the role of macrophages or their susceptibility to clodronate may change with time.


Asunto(s)
Dolor de la Región Lumbar , Radiculopatía , Receptores CCR2 , Animales , Quimiocina CCL2 , Ácido Clodrónico , Modelos Animales de Enfermedad , Ganglios Espinales , Macrófagos , Ratones , Receptores CCR2/genética
20.
Theranostics ; 10(26): 12111-12126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33204332

RESUMEN

Rationale: Psoriasis is a chronic inflammatory disease caused by a complex interplay between the immune and nervous systems with recurrent scaly skin plaques, thickened stratum corneum, infiltration and activation of inflammatory cells, and itch. Despite an increasing availability of immune therapies, they often have adverse effects, high costs, and dissociated effects on inflammation and itch. Activation of sensory neurons innervating the skin and TRPV1 (transient receptor potential vanilloid 1) are emerging as critical components in the pathogenesis of psoriasis, but little is known about their endogenous inhibitors. Recent studies have demonstrated that resolvins, endogenous lipid mediators derived from omega-3 fatty acids, are potent inhibitors of TRP channels and may offer new therapies for psoriasis without known adverse effects. Methods: We used behavioral, electrophysiological and biochemical approaches to investigate the therapeutic effects of resolvin D3 (RvD3), a novel family member of resolvins, in a preclinical model of psoriasis consisting of repeated topical applications of imiquimod (IMQ) to murine skin, which provokes inflammatory lesions that resemble human psoriasis. Results: We report that RvD3 specifically reduced TRPV1-dependent acute pain and itch in mice. Mechanistically, RvD3 inhibited capsaicin-induced TRPV1 currents in dissociated dorsal root ganglion (DRG) neurons via the N-formyl peptide receptor 2 (i.e. ALX/FPR2), a G-protein coupled receptor. Single systemic administration of RvD3 (2.8 mg/kg) reversed itch after IMQ, and repeated administration largely prevented the development of both psoriasiform itch and skin inflammation with concomitant decreased in calcitonin gene-related peptide (CGRP) expression in DRG neurons. Accordingly, specific knockdown of CGRP in DRG was sufficient to prevent both psoriasiform itch and skin inflammation similar to the effects following RvD3 administration. Finally, we elevated the translational potential of this study by showing that RvD3 significantly inhibited capsaicin-induced TRPV1 activity and CGRP release in human DRG neurons. Conclusions: Our findings demonstrate a novel role for RvD3 in regulating TRPV1/CGRP in mouse and human DRG neurons and identify RvD3 and its neuronal pathways as novel therapeutic targets to treat psoriasis.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Dolor/tratamiento farmacológico , Prurito/tratamiento farmacológico , Psoriasis/tratamiento farmacológico , Canales Catiónicos TRPV/antagonistas & inhibidores , Animales , Biopsia , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capsaicina/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Ácidos Grasos Insaturados/uso terapéutico , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/inmunología , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/inmunología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dolor/inducido químicamente , Dolor/inmunología , Dolor/patología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Prurito/inducido químicamente , Prurito/inmunología , Prurito/patología , Psoriasis/complicaciones , Psoriasis/inmunología , Psoriasis/patología , Piel/efectos de los fármacos , Piel/inmunología , Piel/inervación , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA