Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(4): 767-783, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38167738

RESUMEN

Among the eight different triazolopyrimidine isomers existing in nature, 1,2,4-triazolo[1,5-a]pyrimidine (TZP) is one of the most studied and used isomers in medicinal chemistry. For some years, our group has been involved in developing regioselective one-pot procedures for the synthesis of 2-amino-7-aryl-5-methyl- and 2-amino-5-aryl-7-methyl-TZPs of interest in the preparation of antiviral agents. In this work, taking advantage of a Biginelli-like multicomponent reaction (MCR), we report the identification of finely tunable conditions to regioselectively synthesize C-6 ester-substituted amino-TZP analogues, both in dihydro and oxidized forms. Indeed, the use of mild acidic conditions is strongly directed toward the regioselective synthesis of 5-aryl-7-methyl C-6-substituted TZP analogues, while the use of neutral ionic liquids shifted the regioselectivity towards 7-aryl-5-methyl derivatives. In addition, the novel synthesized scaffolds were functionalized at the C-2 position and evaluated for their antiviral activity against RNA viruses (influenza virus, flaviviruses, and SARS-CoV-2). Compounds 25 and 26 emerged as promising anti-flavivirus agents, showing activity in the low micromolar range.


Asunto(s)
Líquidos Iónicos , Isomerismo , Pirimidinas/química , Estereoisomerismo
2.
J Enzyme Inhib Med Chem ; 38(1): 2277135, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955306

RESUMEN

Our previous studies have shown that the introduction of structurally diverse benzyl side chains at the C5-NH2 position of oseltamivir to occupy 150-cavity contributes to the binding affinity with neuraminidase and anti-influenza activity. To obtain broad-spectrum neuraminidase inhibitors, we designed and synthesised a series of novel oseltamivir derivatives bearing different N-heterocycles substituents that have been proved to induce opening of the 150-loop of group-2 neuraminidases. Among them, compound 6k bearing 4-((r)-2-methylpyrrolidin-1-yl) benzyl group exhibited antiviral activities similar to or weaker than those of oseltamivir carboxylate against H1N1, H3N2, H5N1, H5N6 and H5N1-H274Y mutant neuraminidases. More encouragingly, 6k displayed nearly 3-fold activity enhancement against H3N2 virus over oseltamivir carboxylate and 2-fold activity enhancement over zanamivir. Molecular docking studies provided insights into the explanation of its broad-spectrum potency against wild-type neuraminidases. Overall, as a promising lead compound, 6k deserves further optimisation by fully considering the ligand induced flexibility of the 150-loop.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Oseltamivir/farmacología , Oseltamivir/química , Neuraminidasa , Simulación del Acoplamiento Molecular , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Glicósido Hidrolasas
3.
Cancer Lett ; 571: 216331, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37532093

RESUMEN

Human papillomavirus (HPV)-induced cancers still represent a major health issue for worldwide population and lack specific therapeutic regimens. Despite substantial advancements in anti-HPV vaccination, the incidence of HPV-related cancers remains high, thus there is an urgent need for specific anti-HPV drugs. The HPV E7 oncoprotein is a major driver of carcinogenesis that acts by inducing the degradation of several host factors. A target is represented by the cellular phosphatase PTPN14 and its E7-mediated degradation was shown to be crucial in HPV oncogenesis. Here, by exploiting the crystal structure of E7 bound to PTPN14, we performed an in silico screening of small-molecule compounds targeting the C-terminal CR3 domain of E7 involved in the interaction with PTPN14. We discovered a compound able to inhibit the E7/PTPN14 interaction in vitro and to rescue PTPN14 levels in cells, leading to a reduction in viability, proliferation, migration, and cancer-stem cell potential of HPV-positive cervical cancer cells. Mechanistically, as a consequence of PTPN14 rescue, treatment of cancer cells with this compound altered the Yes-associated protein (YAP) nuclear-cytoplasmic shuttling and downstream signaling. Notably, this compound was active against cervical cancer cells transformed by different high-risk (HR)-HPV genotypes indicating a potential broad-spectrum activity. Overall, our study reports the first-in-class inhibitor of E7/PTPN14 interaction and provides the proof-of-principle that pharmacological inhibition of this interaction by small-molecule compounds could be a feasible therapeutic strategy for the development of novel antitumoral drugs specific for HPV-associated cancers.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Virus del Papiloma Humano , Proteínas E7 de Papillomavirus/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Infecciones por Papillomavirus/tratamiento farmacológico , Proteínas Oncogénicas Virales/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras
4.
Eur J Med Chem ; 252: 115275, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931117

RESUMEN

To yield potent neuraminidase inhibitors with improved drug resistance and favorable drug-like properties, two series of novel oseltamivir derivatives targeting the 150-cavity of neuraminidase were designed, synthesized, and biologically evaluated. Among the synthesized compounds, the most potent compound 43b bearing 3-floro-4-cyclopentenylphenzyl moiety exhibited weaker or slightly improved inhibitory activity against wild-type neuraminidases (NAs) of H1N1, H5N1, and H5N8 compared to oseltamivir carboxylate (OSC). Encouragingly, 43b displayed 62.70- and 5.03-fold more potent activity than OSC against mutant NAs of H5N1-H274Y and H1N1-H274Y, respectively. In cellular antiviral assays, 43b exerted equivalent or more potent activities against H1N1, H5N1, and H5N8 compared to OSC with no significant cytotoxicity up to 200 µM. Notably, 43b displayed potent antiviral efficacy in the embryonated egg model, in which achieved a protective effect against H5N1 and H5N8 similar to OSC. Molecular docking studies were implemented to reveal the binding mode of 43b in the binding pocket. Moreover, 43b possessed improved physicochemical properties and ADMET properties compared to OSC by in silico prediction. Taken together, 43b appeared to be a promising lead compound for further investigation.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Oseltamivir/química , Neuraminidasa , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Antivirales/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Glicósido Hidrolasas/metabolismo , Guanidinas/farmacología , Farmacorresistencia Viral
5.
Molecules ; 27(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234966

RESUMEN

To address drug resistance to influenza virus neuraminidase inhibitors (NAIs), a series of novel boron-containing N-substituted oseltamivir derivatives were designed and synthesized to target the 150-cavity of neuraminidase (NA). In NA inhibitory assays, it was found that most of the new compounds exhibited moderate inhibitory potency against the wild-type NAs. Among them, compound 2c bearing 4-(3-boronic acid benzyloxy)benzyl group displayed weaker or slightly improved activities against group-1 NAs (H1N1, H5N1, H5N8 and H5N1-H274Y) compared to that of oseltamivir carboxylate (OSC). Encouragingly, 2c showed 4.6 times greater activity than OSC toward H5N1-H274Y NA. Moreover, 2c exerted equivalent or more potent antiviral activities than OSC against H1N1, H5N1 and H5N8. Additionally, 2c demonstrated low cytotoxicity in vitro and no acute toxicity at the dose of 1000 mg/kg in mice. Molecular docking of 2c was employed to provide a possible explanation for the improved anti-H274Y NA activity, which may be due to the formation of key additional hydrogen bonds with surrounding amino acid residues, such as Arg152, Gln136 and Val149. Taken together, 2c appeared to be a promising lead compound for further optimization.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Aminoácidos/farmacología , Animales , Antivirales/química , Boro/farmacología , Ácidos Borónicos/farmacología , Farmacorresistencia Viral , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Virus de la Influenza A/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Neuraminidasa , Oseltamivir/análogos & derivados , Oseltamivir/química
6.
J Med Chem ; 65(17): 11550-11573, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939763

RESUMEN

With our continuous endeavors in seeking neuraminidase (NA) inhibitors, we reported herein three series of novel oseltamivir amino derivatives with the goal of exploring the druggable chemical space inside the 150-cavity of influenza virus NAs. Among them, around half of the compounds in series C were demonstrated to be better inhibitors against both wild-type and oseltamivir-resistant group-1 NAs than oseltamivir carboxylate (OSC). Notably, compounds 12d, 12e, 15e, and 15i showed more potent or equipotent antiviral activity against H1N1, H5N1, and H5N8 viruses compared to OSC in cellular assays. Furthermore, compounds 12e and 15e exhibited high metabolic stability in human liver microsomes (HLMs) and low inhibitory effect on main cytochrome P450 (CYP) enzymes, as well as low acute/subacute toxicity and certain antiviral efficacy in vivo. Also, pharmacokinetic (PK) and molecular docking studies were performed. Overall, 12e and 15e possess great potential to serve as anti-influenza candidates and are worthy of further investigation.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Antivirales/química , Antivirales/farmacología , Farmacorresistencia Viral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Guanidinas/farmacología , Humanos , Simulación del Acoplamiento Molecular , Neuraminidasa , Oseltamivir/química , Relación Estructura-Actividad
7.
J Med Chem ; 64(24): 17992-18009, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34735766

RESUMEN

Our previous efforts have proved that modifications targeting the 150-cavity of influenza neuraminidase can achieve more potent and more selective inhibitors. In this work, four subseries of C5-NH2 modified oseltamivir derivatives were designed and synthesized to explore every region inside the 150-cavity. Among them, compound 23d was exceptionally potent against the whole panel of Group-1 NAs with IC50 values ranging from 0.26 to 0.73 nM, being 15-53 times better than oseltamivir carboxylate (OSC) and 7-11 times better than zanamivir. In cellular assays, 23d showed more potent or equipotent antiviral activities against corresponding virus strains compared to OSC with no cytotoxicity. Furthermore, 23d exhibited high metabolic stability in human liver microsomes (HLM) and low inhibitory effect on main cytochrome P450 enzymes. Notably, 23d displayed favorable druggability in vivo and potent antiviral efficacy in the embryonated egg model and mice model. Overall, 23d appears to be a promising candidate for the treatment of influenza virus infection.


Asunto(s)
Antivirales/farmacología , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Oseltamivir/farmacología , Animales , Antivirales/química , Antivirales/farmacocinética , Disponibilidad Biológica , Embrión de Pollo , Simulación por Computador , Semivida , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Oseltamivir/química , Oseltamivir/farmacocinética , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
8.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34439242

RESUMEN

Human papillomavirus is the most common viral infectious agent responsible for cancer development in humans. High-risk strains are known to induce cancer through the expression of the viral oncogenes E6 and E7, yet we have only a partial understanding of the precise mechanisms of action of these viral proteins. Here we investigated the molecular mechanism through which the oncoprotein E6 alters the Hippo-YAP/TAZ pathway to trigger YAP/TAZ induction in cancer cells. By employing E6 overexpression systems combined with protein-protein interaction studies and loss-of-function approaches, we discovered that the E6-mediated targeting of hScrib, which supports YAP/TAZ upregulation, intimately requires E6 homodimerization. We show that the self-association of E6, previously reported only in vitro, takes place in the cytoplasm and, as a dimer, E6 targets the fraction of hScrib at the cell cortex for proteasomal degradation. Thus, E6 homodimerization emerges as an important event in the mechanism of E6-mediated hScrib targeting to sustain downstream YAP/TAZ upregulation, unraveling for the first time the key role of E6 homodimerization in the context of its transforming functions and thus paving the way for the possible development of E6 dimerization inhibitors.

9.
Eur J Med Chem ; 221: 113494, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33962311

RESUMEN

In the search for new anti-influenza virus (IV) compounds, we have identified the 1,2,4-triazolo[1,5-a]pyrimidine (TZP) as a very suitable scaffold to obtain compounds able to disrupt IV RNA-dependent RNA polymerase (RdRP) PA-PB1 subunits heterodimerization. In this work, in order to acquire further SAR insights for this class of compounds and identify more potent derivatives, we designed and synthesized additional series of analogues to investigate the role of the substituents around the TZP core. To this aim, we developed four facile and efficient one-step procedures for the synthesis of 5-phenyl-, 6-phenyl- and 7-phenyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidines, and 2-amino-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol. Two analogues having the ethyl carboxylate moiety at the C-2 position of the TZP were also prepared in good yields. Then, the scaffolds herein synthesized and two previous scaffolds were functionalized and evaluated for their anti-IAV activity, leading to the identification of compound 22 that showed both anti-PA-PB1 (IC50 = 19.5 µM) and anti-IAV activity (EC50 = 16 µM) at non-toxic concentrations, thus resulting among the most active TZP derivatives reported to date by us. A selection of the synthesized compounds, along with a set of in-house available analogues, was also tested against SARS-CoV-2. The most promising compound 49 from this series displayed an EC50 value of 34.47 µM, highlighting the potential of the TPZ scaffold in the search for anti-CoV agents.


Asunto(s)
Antivirales/farmacología , Multimerización de Proteína/efectos de los fármacos , Pirimidinas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Triazoles/farmacología , Proteínas Virales/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Chlorocebus aethiops , Perros , Diseño de Fármacos , Células HEK293 , Humanos , Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Pruebas de Sensibilidad Microbiana , Pirimidinas/síntesis química , SARS-CoV-2/efectos de los fármacos , Triazoles/síntesis química , Células Vero
10.
Eur J Med Chem ; 212: 113097, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33385836

RESUMEN

Encouraged by our earlier discovery of N1-selective inhibitors, the 150-cavity of influenza virus neuraminidases (NAs) could be further exploited to yield more potent oseltamivir derivatives. Herein, we report the design, synthesis and biological evaluation of a series of novel oseltamivir derivatives via the structural modifications at C5-NH2 of oseltamivir targeting 150-cavity. Among them, compound 5c bearing 4-(3-methoxybenzyloxy)benzyl group exhibited the most potent activity, which was lower or modestly improved activities than oseltamivir carboxylate (OSC) against N1 (H1N1), N1 (H5N1) and N1 (H5N1-H274Y). Specifically, there was 30-fold loss of activity against the wild-type strain H1N1. However, 5c displayed 4.85-fold more potent activity than OSC against H5N1-H274Y NA. Also, 5c demonstrated low cytotoxicity in vitro and no acute toxicity in mice. Molecular docking studies provided insights into the high potency of 5c against N1 and N1-H274Y mutant NAs. Besides, the in silico prediction of physicochemical properties and CYP enzymatic inhibitory ability of representative compounds were conducted to evaluate their drug-like properties.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Neuraminidasa/antagonistas & inhibidores , Orthomyxoviridae/efectos de los fármacos , Oseltamivir/farmacología , Animales , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Femenino , Masculino , Ratones , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Neuraminidasa/genética , Neuraminidasa/metabolismo , Orthomyxoviridae/enzimología , Oseltamivir/análogos & derivados , Oseltamivir/química , Relación Estructura-Actividad
11.
Eur J Med Chem ; 209: 112944, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328103

RESUMEN

Influenza viruses (Flu) are responsible for seasonal epidemics causing high rates of morbidity, which can dramatically increase during severe pandemic outbreaks. Antiviral drugs are an indispensable weapon to treat infected people and reduce the impact on human health, nevertheless anti-Flu armamentarium still remains inadequate. In search for new anti-Flu drugs, our group has focused on viral RNA-dependent RNA polymerase (RdRP) developing disruptors of PA-PB1 subunits interface with the best compounds characterized by cycloheptathiophene-3-carboxamide and 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide scaffolds. By merging these moieties, two very interesting hybrid compounds were recently identified, starting from which, in this paper, a series of analogues were designed and synthesized. In particular, a thorough exploration of the cycloheptathiophene-3-carboxamide moiety led to acquire important SAR insight and identify new active compounds showing both the ability to inhibit PA-PB1 interaction and viral replication in the micromolar range and at non-toxic concentrations. For few compounds, the ability to efficiently inhibit PA-PB1 subunits interaction did not translate into anti-Flu activity. Chemical/physical properties were investigated for a couple of compounds suggesting that the low solubility of compound 14, due to a strong crystal lattice, may have impaired its antiviral activity. Finally, computational studies performed on compound 23, in which the phenyl ring suitably replaced the cycloheptathiophene, suggested that, in addition to hydrophobic interactions, H-bonds enhanced its binding within the PAC cavity.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Pirimidinas/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Triazoles/química , Antivirales/química , Humanos , Virus de la Influenza A/enzimología , Simulación del Acoplamiento Molecular , Unión Proteica
12.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008354

RESUMEN

High-risk human papillomaviruses (HR-HPV) are the etiological agents of almost all cervical cancer cases and a high percentage of head-and-neck malignancies. Although HPV vaccination can reduce cancer incidence, its coverage significantly differs among countries, and, therefore, in the next decades HPV-related tumors will not likely be eradicated worldwide. Thus, the need of specific treatments persists, since no anti-HPV drug is yet available. We recently discovered a small molecule (Cpd12) able to inhibit the E6-mediated degradation of p53 through the disruption of E6/p53 binding in HPV16- and HPV18-positive cervical cancer cells. By employing several biochemical and cellular assays, here we show that Cpd12 is also active against cervical cancer cells transformed by other HR-HPV strains, such as HPV68 and HPV45, and against a HPV16-transformed head-and-neck cancer cell line, suggesting the possibility to employ Cpd12 as a targeted drug against a broad range of HPV-induced cancers. In these cancer cell lines, the antitumoral mechanism of action of Cpd12 involves p53-dependent cell cycle arrest, a senescent response, and inhibition of cancer cell migration. Finally, we show that Cpd12 can strongly synergize with taxanes and topoisomerase inhibitors, encouraging the evaluation of Cpd12 in preclinical studies for the targeted treatment of HPV-related carcinomas.

13.
Cancer Lett ; 470: 115-125, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693922

RESUMEN

Despite prophylactic vaccination campaigns, human papillomavirus (HPV)-induced cancers still represent a major medical issue for global population, thus specific anti-HPV drugs are needed. Since the ability of HPV E6 oncoprotein to promote p53 degradation is linked to tumor progression, E6 has been proposed as an ideal target for cancer treatment. Using the crystal structure of the E6/E6AP/p53 complex, we performed an in silico screening of small-molecule libraries against a highly conserved alpha-helix in the N-terminal domain of E6 involved in the E6-p53 interaction. We discovered a compound able to inhibit the E6-mediated degradation of p53 through disruption of E6-p53 binding both in vitro and in cells. This compound could restore p53 intracellular levels and transcriptional activity, reduce the viability and proliferation of HPV-positive cancer cells, and block 3D cervospheres formation. Mechanistic studies revealed that the compound anti-tumor activity mainly relies on induction of cell cycle arrest and senescence. Our data demonstrate that the disruption of the direct E6-p53 interaction can be obtained with a small-molecule compound leading to specific antitumoral activity in HPV-positive cancer cells and thus represents a new approach for anti-HPV drug development.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Oncogénicas Virales/antagonistas & inhibidores , Infecciones por Papillomavirus/tratamiento farmacológico , Proteínas Represoras/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Simulación por Computador , Cristalografía , Ensayos de Selección de Medicamentos Antitumorales/métodos , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidad , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Neoplasias/patología , Neoplasias/virología , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Esferoides Celulares , Relación Estructura-Actividad
14.
Antiviral Res ; 165: 55-64, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30885750

RESUMEN

Influenza viruses are major respiratory pathogens responsible for both seasonal epidemics and occasional pandemics worldwide. The current available treatment options have limited efficacy and thus the development of new antivirals is highly needed. We previously reported the identification of a series of cycloheptathiophene-3-carboxamide compounds as influenza A virus inhibitors that act by targeting the protein-protein interactions between the PA-PB1 subunits of the viral polymerase. In this study, we characterized the antiviral properties of the most promising compounds as well as investigated their propensity to induce drug resistance. Our results show that some of the selected compounds possess potent, broad-spectrum anti-influenza activity as they efficiently inhibited the replication of several strains of influenza A and B viruses, including an oseltamivir-resistant clinical isolate, with nanomolar or low-micromolar potency. The most promising compounds specifically inhibited the PA-PB1 binding in vitro and interfered with the influenza A virus polymerase activity in a cellular context, without showing cytotoxicity. The most active PA-PB1 inhibitors showed to possess a drug resistance barrier higher than that of oseltamivir. Indeed, no viral variants with reduced susceptibility to the selected compounds emerged after serial passages of influenza A virus under drug selective pressure. Overall, our studies identified potent PA-PB1 inhibitors as promising candidates for the development of new anti-influenza drugs.


Asunto(s)
Antivirales/farmacología , Orthomyxoviridae/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , Animales , Farmacorresistencia Viral , Humanos , Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Oseltamivir/farmacología , ARN Polimerasa Dependiente del ARN/biosíntesis , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
15.
J Med Chem ; 61(22): 9976-9999, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30365885

RESUMEN

Due to the emergence of highly pathogenic and oseltamivir-resistant influenza viruses, there is an urgent need to develop new anti-influenza agents. Herein, five subseries of oseltamivir derivatives were designed and synthesized to improve their activity toward drug-resistant viral strains by further exploiting the 150-cavity in the neuraminidases (NAs). The bioassay results showed that compound 21h exhibited antiviral activities similar to or better than those of oseltamivir carboxylate (OSC) against H5N1, H5N2, H5N6, and H5N8. Besides, 21h was 5- to 86-fold more potent than OSC toward N1, N8, and N1-H274Y mutant NAs in the inhibitory assays. Computational studies provided a plausible rationale for the high potency of 21h against group-1 and N1-H274Y NAs. In addition, 21h demonstrated acceptable oral bioavailability, low acute toxicity, potent antiviral activity in vivo, and high metabolic stability. Overall, the above excellent profiles make 21h a promising drug candidate for the treatment of influenza virus infection.


Asunto(s)
Diseño de Fármacos , Farmacorresistencia Viral/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Mutación , Neuraminidasa/genética , Oseltamivir/química , Oseltamivir/farmacología , Animales , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacocinética , Antivirales/farmacología , Dominio Catalítico , Perros , Farmacorresistencia Viral/genética , Estabilidad de Medicamentos , Humanos , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Masculino , Simulación del Acoplamiento Molecular , Neuraminidasa/química , Neuraminidasa/metabolismo , Nitrógeno/química , Oseltamivir/metabolismo , Oseltamivir/farmacocinética , Ratas , Distribución Tisular
16.
J Med Chem ; 61(14): 6379-6397, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29965752

RESUMEN

On the basis of our earlier discovery of N1-selective inhibitors, the 150-cavity of influenza virus neuraminidases (NAs) could be further exploited to yield more potent oseltamivir derivatives. Among the synthesized compounds, 15b and 15c were exceptionally active against both group-1 and -2 NAs. Especially for 09N1, N2, N6, and N9 subtypes, they showed 6.80-12.47 and 1.20-3.94 times greater activity than oseltamivir carboxylate (OSC). They also showed greater inhibitory activity than OSC toward H274Y and E119V variant. In cellular assays, they exhibited greater potency than OSC toward H5N1, H5N2, H5N6, and H5N8 viruses. 15b demonstrated high metabolic stability, low cytotoxicity in vitro, and low acute toxicity in mice. Computational modeling and molecular dynamics studies provided insights into the role of R group of 15b in improving potency toward group-1 and -2 NAs. We believe the successful exploitation of the 150-cavity of NAs represents an important breakthrough in the development of more potent anti-influenza agents.


Asunto(s)
Diseño de Fármacos , Farmacorresistencia Viral/genética , Mutación , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/genética , Oseltamivir/análogos & derivados , Oseltamivir/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Línea Celular , Farmacorresistencia Viral/efectos de los fármacos , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Masculino , Modelos Moleculares , Neuraminidasa/química , Oseltamivir/efectos adversos , Conformación Proteica , Seguridad , Proteínas Virales/química
17.
Sci Rep ; 8(1): 6020, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29662081

RESUMEN

High-risk human papillomaviruses (HR-HPVs) are the causative agents for the onset of several epithelial cancers in humans. The deregulated expression of the viral oncoproteins E6 and E7 is the driving force sustaining the progression of malignant transformation in pre-neoplastic lesions. Targeting the viral E6 oncoprotein through inhibitory compounds can counteract the survival of cancer cells due to the reactivation of p53-mediated pathways and represents an intriguing strategy to treat HPV-associated neoplasias. Here, we describe the development of a quantitative and easy-to-perform assay to monitor the E6-mediated degradation of p53 in living cells to be used for small-molecule testing. This assay allows to unbiasedly determine whether a compound can protect p53 from the E6-mediated degradation in cells, through a simple 3-step protocol. We validated the assay by testing two small molecules, SAHA and RITA, reported to impair the E6-mediated p53 degradation. Interestingly, we observed that only SAHA efficiently rescued p53, while RITA could not provide the same degree of protection. The possibility to specifically and quantitatively monitor the ability of a selected compound to rescue p53 in a cellular context through our LumiFluo assay could represent an important step towards the successful development of anti-HPV drugs.


Asunto(s)
Antineoplásicos/farmacología , Papillomavirus Humano 16/efectos de los fármacos , Proteínas Oncogénicas Virales/metabolismo , Proteolisis/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Línea Celular Tumoral , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Papillomavirus Humano 16/metabolismo , Humanos , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA