RESUMEN
The CandyCollect device is a lollipop-inspired open fluidic oral sampling device designed to provide a comfortable user sampling experience. We demonstrate that the CandyCollect device can be coupled with a rapid antigen detection test (RADT) kit designed for Group A Streptococcus (GAS). Through in vitro experiments with pooled saliva spiked with Streptococcus pyogenes we tested various reagents and elution volumes to optimize the RADT readout from CandyCollect device samples. The resulting optimized protocol uses the kit-provided reagents and lateral flow assay (LFA) while replacing the kit's pharyngeal swab with the CandyCollect device, reducing the elution solution volume, and substituting the tube used for elution to accommodate the CandyCollect device. Positive test results were detected by eye with bacterial concentrations as low as the manufacturer's "minimal detection limit" - 1.5×105 CFU/mL. LFA strips were also scanned and quantified with image analysis software to determine the signal-to-baseline ratio (SBR) and categorize positive test results without human bias. We tested our optimized protocol for integrating CandyCollect and RADT using CandyCollect clinical samples from pediatric patients (n=6) who were previously diagnosed with GAS pharyngitis via pharyngeal swabs tested with RADT as part of their clinical care. The LFA results of these CandyCollect devices and interspersed negative controls were determined by independent observers, with positive results obtained in four of the six participants on at least one LFA replicate. Taken together, our results show that CandyCollect devices from children with GAS pharyngitis can be tested using LFA rapid tests.
RESUMEN
Cell-laden hydrogel constructs suspended between pillars are powerful tools for modeling tissue structure and physiology, though current fabrication techniques often limit them to uniform compositions. In contrast, tissues are complex in nature with spatial arrangements of cell types and extracellular matrices. Thus, we present Suspended Tissue Open Microfluidic Patterning (STOMP), which utilizes a removable, open microfluidic patterning channel to pattern multiple spatial regions across a single suspended tissue. The STOMP platform contains capillary pinning features along the open channel that controls the fluid front, allowing multiple cell and extracellular matrix precursors to be pipetted into one tissue. We have used this technique to pattern suspended tissues with multiple regional components using a variety of native and synthetic extracellular matrices, including fibrin, collagen, and poly(ethylene glycol). Here, we demonstrate that STOMP models a region of fibrosis in a functional heart tissue and a bone-ligament junction in periodontal tissues. Additionally, the STOMP platform can be customized to allow patterning of suspended cores and more spatial configurations, enhancing its utility in complex tissue modeling. STOMP is a versatile technique for generating suspended tissue models with increased control over cell and hydrogel composition to model interfacial tissue regions in a suspended tissue.
RESUMEN
Extracellular Vesicles (EVs) are membrane-derived vesicles shed by cells into the extracellular space that play key roles in intercellular communication and other biological processes. As membrane-bound cargos of nucleic acids and other proteins that are abundantly found in virtually every biofluid including blood, urine, and saliva, EVs are widely regarded as promising biomarkers for disease detection. While it is an increasingly promising biofluid from which to isolate EVs, saliva poses challenges due its complexity and heterogeneity-cells, debris, and other proteins can inhibit the isolation of EVs by traditional platforms. Here, we employ the CandyCollect, a lollipop-inspired sampling device with open microfluidic channels, as a non-invasive and patient-friendly alternative for the capture of salivary EVs. The CandyCollect simplifies sample preparation by effectively pre-concentrating EVs on the device surface before EVs are eluted off of the CandyCollect, labeled with cholesterol-tagged oligonucleotides, and subsequently detected by qPCR with primers specific for the tagged oligos to enumerate the relative number of EVs. We demonstrate that downstream EV cargo analysis can be performed using Simoa. Overall, the CandyCollect ushers a new method to capture, enumerate, and analyze salivary EVs.
RESUMEN
Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels. We also show that a series of open-channel trigger valves can be placed alongside or opposite a main channel resulting in a layered capillary flow. We developed a closed form model for the dynamics of the flow at trigger valves based on the concept of average friction length and successfully validated the model against experiments. For the main channel, we discuss layered flow behavior in the light of the Taylor-Aris dispersion theory and in the channel turns by considering Dean theory of mixing. This work has potential applications in autonomous microfluidics systems for biosensing, at-home or point-of-care sample preparation devices, hydrogel patterning for 3D cell culture and organ-on-a-chip models.
RESUMEN
Remote research studies are an invaluable tool for reaching populations in geographical regions with limited access to large medical centers or universities. To expand the remote study toolkit, we have previously developed homeRNA, which allows for at-home self-collection and stabilization of blood and demonstrated the feasibility of using homeRNA in high temperature climates. Here, we expand upon this work through a systematic study exploring the effects of high temperature on RNA integrity through in-lab and field experiments. Compared to the frozen controls (overall mean RIN of 8.2, n = 8), samples kept at 37°C for 2, 4, and 8 days had mean RINs of 7.6, 5.9, and 5.2 (n = 3), respectively, indicating that typical shipping conditions (~2 days) yield samples suitable for downstream RNA sequencing. Shorter time intervals (6 hours) resulted in minimal RNA degradation (median RIN of 6.4, n = 3) even at higher temperatures (50°C) compared to the frozen control (mean RIN of 7.8, n = 3). Additionally, we shipped homeRNA-stabilized blood from a single donor to 14 different states and back during the summer with continuous temperature probes (7.1 median RIN, n = 42). Samples from all locations were analyzed with 3' mRNA-seq to assess differences in gene counts, with the transcriptomic data suggesting that there was no preferential degradation of transcripts as a result of different shipping times, temperatures, and regions. Overall, our data support that homeRNA can be used in elevated temperature conditions, enabling decentralized sample collection for telemedicine, global health, and clinical research.
Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/sangre , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Proteínas de Fusión bcr-abl/genética , Sistemas de Atención de Punto , Masculino , Femenino , Pruebas con Sangre Seca/métodos , Persona de Mediana Edad , Anciano , AdultoRESUMEN
Sperm cryopreservation is important for individuals undergoing infertility treatment, and for those who wish to preserve fertility potential, prior to treatments like chemotherapy, radiation therapy, gender-affirming medical interventions, elective fertility delay, or individuals in high-risk professions such as the military. Current methods for sperm cryopreservation result in approximately 30-50% decrease in sperm motility. However, recent studies have shown that ultra-rapid freezing (vitrification) is a valuable approach for maintaining sperm quality after freeze-thawing processes in the clinical laboratory setting and requires submicroliter to microliter volumes. A major challenge for the adoption of vitrification in fertility laboratories is the ability to pipette small volumes of sample. Here, we present a method that leverages open-channel droplet microfluidics to autonomously generate sub-microliter to microliter volumes of purified human sperm samples. Using a novel, open-channel droplet generator, we found no change in sperm movement and kinematic data after exposure to device and reagents in our platform. We conclude that our platform is compatible with human sperm, an important foundation for future implementation of vitrification in fertility laboratories.
RESUMEN
State the purpose: Obtaining high-quality samples to diagnose streptococcal pharyngitis in pediatric patients is challenging due to discomfort associated with traditional pharyngeal swabs. This may cause reluctance to go to the clinic, inaccurate diagnosis, or inappropriate treatment for children with sore throat. Here, we determined the efficacy of CandyCollect, a lollipop-inspired open-microfluidic pathogen collection device, to capture Group A Streptococcus (GAS) and compare user preference for CandyCollect, conventional pharyngeal swabs, or mouth swabs in children with pharyngitis and their caregivers. Results: All child participants (30/30) were positive for GAS by qPCR on both the mouth swab and CandyCollect. Caregivers ranked CandyCollect as a good sampling method overall (27/30), and all caregivers (30/30) would recommend CandyCollect for children 5 years and older. Twenty-three of 30 children "really like" the taste and 24/30 would prefer to use CandyCollect if a future test were needed. All caregivers (30/30) and most children (28/30) would be willing to use CandyCollect at home. Conclusion: All participants tested positive for GAS on all three collection methods (pharyngeal swab, mouth swab, and CandyCollect). While both caregivers and children like CandyCollect, some caregivers would prefer a shorter collection time. Future work includes additional studies with larger cohorts presenting with pharyngitis of unknown etiology and shortening collection time while maintaining the attractive form of the device. Translational Impact Statement: Obtaining oral samples for the diagnosis of streptococcal pharyngitis is of great importance for children. To address the challenges associated with traditional pharyngeal swab sampling, we developed the CandyCollect device, a lollipop-inspired open mesofluidic saliva sampling system. In this study, saliva samples were collected from children, aged 5-14 years, with CandyCollect and mouth swabs and analyzed via qPCR. The results show CandyCollect is the child preferred collection tool and had 100% concordance with the results from traditional diagnosis methods as part of their clinical care.
RESUMEN
Background: Early host immunity to acute respiratory infections (ARIs) is heterogenous, dynamic, and critical to an individual's infection outcome. Due to limitations in sampling frequency/timepoints, kinetics of early immune dynamics in natural human infections remain poorly understood. In this nationwide prospective cohort study, we leveraged a self-blood collection tool (homeRNA) to profile detailed kinetics of the pre-symptomatic to convalescence host immunity to contemporaneous respiratory pathogens. Methods: We enrolled non-symptomatic adults with recent exposure to ARIs who subsequently tested negative (exposed-uninfected) or positive for respiratory pathogens. Participants self-collected blood and nasal swabs daily for seven consecutive days followed by weekly blood collection for up to seven additional weeks. Symptom burden was assessed during each collection. Nasal swabs were tested for SARS-CoV-2 and common respiratory pathogens. 92 longitudinal blood samples spanning the pre-shedding to post-acute phase of eight SARS-CoV-2-infected participants and 40 interval-matched samples from four exposed-uninfected participants were subjected to high-frequency longitudinal profiling of 773 host immune genes. Findings: Between June 2021 - April 2022, 68 participants across 26 U.S. states completed the study and self-collected a total of 691 and 466 longitudinal blood and nasal swab samples along with 688 symptom surveys. SARS-CoV-2 was detected in 17 out of 22 individuals with study-confirmed respiratory infection. With rapid dissemination of home self-collection kits, two and four COVID-19+ participants started collection prior to viral shedding and symptom onset, respectively, enabling us to profile detailed expression kinetics of the earliest blood transcriptional response to contemporaneous variants of concern. In pre-shedding samples, we observed transient but robust expression of T-cell response signatures, transcription factor complexes, prostaglandin biosynthesis genes, pyrogenic cytokines, and cytotoxic granule genes. This is followed by a rapid induction of many interferon-stimulated genes (ISGs), concurrent to onset of viral shedding and increase in nasal viral load. Finally, we observed increased expression of host defense peptides (HDPs) in exposed-uninfected individuals over the 4-week observational window. Interpretation: We demonstrated that unsupervised self-collection and stabilization of capillary blood can be applied to natural infection studies to characterize detailed early host immune kinetics at a temporal resolution comparable to that of human challenge studies. The remote (decentralized) study framework enables conduct of large-scale population-wide longitudinal mechanistic studies. Expression of cytotoxic/T-cell signatures in pre-shedding samples preceding expansion of innate ISGs suggests a potential role for T-cell mediated pathogen control during early infection. Elevated expression of HDPs in exposed-uninfected individuals warrants further validation studies to assess their potential role in protective immunity during pathogen exposure. Funding: This study was funded by R35GM128648 to ABT for in-lab developments of homeRNA, Packard Fellowship from the David and Lucile Packard Foundation to ABT, and R01AI153087 to AW.
RESUMEN
Nirmatrelvir is a potent and selective severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease inhibitor. Nirmatrelvir co-packaged with ritonavir (as PAXLOVID) received US Food and Drug Administration (FDA) Emergency Use Authorization (EUA) on December 22, 2021, as an oral treatment for coronavirus disease 2019 (COVID-19) and subsequent new drug application approval on May 25, 2023. Pharmacokinetic (PK) capillary blood sampling at-home using Tasso-M20 micro-volumetric sampling device was implemented in the program, including three phase II/III outpatient and several clinical pharmacology studies supporting the EUA. The at-home sampling complemented venous blood sampling procedures to enrich the PK dataset, to decrease the need for patients' site visit for PK sampling, and to allow different sampling approaches for flexibility and convenience. To demonstrate concordance/equivalence, bridging between venous plasma and Tasso dried blood results was conducted by comparing concentrations and derived PK parameters from both sampling approaches. In addition, a two-compartment population PK model was utilized to bridge the plasma and Tasso data by estimating the PK parameters using blood-to-plasma ratio as a slope parameter. Operational challenges were successfully managed to implement at-home PK sampling in global phase II/III trials. Sample quality was generally very good with less than 3% samples deemed as "not usable" from over 800 samples collected in all the studies. Experience gained from sites and patients will guide future broader implementations.
Asunto(s)
Lactamas , Ritonavir , Estados Unidos , Humanos , Leucina , Atención Dirigida al PacienteRESUMEN
The search for efficient capillary pumping has led to two main directions for investigation: first, assembly of capillary channels to provide high capillary pressures, and second, imbibition in absorbing fibers or paper pads. In the case of open microfluidics (i.e., channels where the top boundary of the fluid is in contact with air instead of a solid wall), the coupling between capillary channels and paper pads unites the two approaches and provides enhanced capillary pumping. In this work, we investigate the coupling of capillary trees-networks of channels mimicking the branches of a tree-with paper pads placed at the extremities of the channels, mimicking the small capillary networks of leaves. It is shown that high velocities and flow rates (7 mm/s or 13.1 µl/s) for more than 30 s using 50% (v/v) isopropyl alcohol, which has a 3-fold increase in viscosity in comparison to water; 6.5 mm/s or 12.1 µl/s for more than 55 s with pentanol, which has a 3.75-fold increase in viscosity in comparison to water; and >3.5 mm/s or 6.5 µl/s for more than 150 s with nonanol, which has a 11-fold increase in viscosity in comparison to water, can be reached in the root channel, enabling higher sustained flow rates than that of capillary trees alone.
RESUMEN
Respiratory infections are common in children, and there is a need for user-friendly collection methods. Here, we performed the first human subjects study using the CandyCollect device, a lollipop-inspired saliva collection device .We showed that the CandyCollect device can be used to collect salivary bacteria from healthy adults using Streptococcus mutans and Staphylococcus aureus as proof-of-concept commensal bacteria. We enrolled healthy adults in a nationwide (USA) remote study in which participants were sent study packages containing CandyCollect devices and traditional commercially available oral swabs and spit tubes. Participants sampled themselves at home, completed usability and user preference surveys, and mailed the samples back to our laboratory for analysis by qPCR. Our results showed that for participants in which a given bacterium (S. mutans or S. aureus) was detected in one or both of the commercially available methods (oral swab and/or spit tubes), CandyCollect devices had a 100% concordance with the positive result (n = 14 participants). Furthermore, the CandyCollect device was ranked the highest preference sampling method among the three sampling methods by 26 participants surveyed (combining survey results across two enrollment groups). We also showed that the CandyCollect device has a shelf life of up to 1 year at room temperature, a storage period that is convenient for clinics or patients to keep the CandyCollect device and use it any time. Taken together, we have demonstrated that the CandyCollect is a user-friendly saliva collection tool that has the potential to be incorporated into diagnostic assays in clinic visits and telemedicine.
Asunto(s)
Saliva , Staphylococcus aureus , Niño , Humanos , Adulto , Saliva/microbiología , Manejo de Especímenes/métodos , Streptococcus mutans , LaboratoriosRESUMEN
Open droplet microfluidic systems manipulate droplets on the picolitre-to-microlitre scale in an open environment. They combine the compartmentalization and control offered by traditional droplet-based microfluidics with the accessibility and ease-of-use of open microfluidics, bringing unique advantages to applications such as combinatorial reactions, droplet analysis and cell culture. Open systems provide direct access to droplets and allow on-demand droplet manipulation within the system without needing pumps or tubes, which makes the systems accessible to biologists without sophisticated setups. Furthermore, these systems can be produced with simple manufacturing and assembly steps that allow for manufacturing at scale and the translation of the method into clinical research. This Review introduces the different types of open droplet microfluidic system, presents the physical concepts leveraged by these systems and highlights key applications.
Asunto(s)
Biología , Microfluídica , Microfluídica/métodosRESUMEN
Respiratory infections are common in children, and there is a need for user-friendly collection methods. Here, we performed the first human subjects study using the CandyCollect device, a lollipop inspired saliva collection device. 1 We showed the CandyCollect device can be used to collect salivary bacteria from healthy adults using Streptococcus mutans and Staphylococcus aureus as proof-of-concept commensal bacteria. We enrolled healthy adults in a nationwide (USA) remote study in which participants were sent study packages containing CandyCollect devices and traditional commercially available oral swabs and spit tubes. Participants sampled themselves at home, completed usability and user preference surveys, and mailed the samples back to our laboratory for analysis by qPCR. Our results showed that for participants in which a given bacterium ( S. mutans or S. aureus ) was detected in one or both of the commercially available methods (oral swab and/or spit tubes), CandyCollect devices had a 100% concordance with the positive result (n=14 participants). Furthermore, the CandyCollect device was ranked the highest preference sampling method among the three sampling methods by 26 participants surveyed (combining survey results across two enrollment groups). We also showed that the CandyCollect device has a shelf life of up to 1 year at room temperature, a storage period that is convenient for clinics or patients to keep the CandyCollect device and use it any time. Taken together, we have demonstrated that the CandyCollect is a user-friendly saliva collection tool that has the potential to be incorporated into diagnostic assays in clinic visits and telemedicine.
RESUMEN
BACKGROUND: Abnormal liver function is a common manifestation of human disease and may also occur in approved and investigational medications as drug-induced liver injury (DILI). Capillary blood collection devices may allow for more frequent and convenient measurement outside of the clinic. Validation of such approaches is lacking. METHODS: This prospective, biospecimens collection study evaluated the Tasso+ in patients with abnormal liver tests (NCT05259618). The primary objective was to define the concordance of alanine aminotransferase (ALT) obtained via Tasso+ compared to standard venipuncture. Secondary objectives included measurement of 14 other analytes and patient surveys. At the time of venipuncture, 2 Tasso+ samples were collected: one was centrifuged and shipped, and the other was refrigerated and shipped as whole blood. RESULTS: Thirty-six patients with elevated ALT values were enrolled. In total, 100 venipuncture, 50 Tasso+ centrifuged, and 48 Tasso+ whole blood samples were obtained. Tasso+ centrifuged samples demonstrated concordance correlation coefficients (CCC) of >0.99 for ALT, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and total bilirubin and CCC >0.95 for albumin, chloride, enzymatic creatinine, serum glucose, magnesium, and phosphorus. Tasso+ whole blood showed CCC of >0.99 for AST, bilirubin total, and enzymatic creatinine and CCC >0.95 for ALT, ALP, albumin, magnesium, and phosphorus. Hemolysis was comparable across the 3 sample types, but its impact was reflected in the Tasso+ potassium data. Patient feedback indicated a very favorable patient experience. CONCLUSIONS: The capillary blood collection device, Tasso+, showed substantial to almost perfect concordance to standard venipuncture for measurement of abnormal liver function. Studies are ongoing to validate longitudinal sampling outside of the clinic. Clinicaltrials.gov Registration Number: NCT05259618.
Asunto(s)
Magnesio , Flebotomía , Humanos , Flebotomía/efectos adversos , Estudios Prospectivos , Creatinina , Fosfatasa Alcalina , Bilirrubina , Hígado , Fósforo , AlbúminasRESUMEN
Interactions between fibroblasts and immune cells play an important role in tissue inflammation. Previous studies have found that eosinophils activated with interleukin-3 (IL-3) degranulate on aggregated immunoglobulin G (IgG) and release mediators that activate fibroblasts in the lung. However, these studies were done with eosinophil-conditioned media that have the capacity to investigate only one-way signaling from eosinophils to fibroblasts. Here, we demonstrate a coculture model of primary normal human lung fibroblasts (HLFs) and human blood eosinophils from patients with allergy and asthma using an open microfluidic coculture device. In our device, the two types of cells can communicate via two-way soluble factor signaling in the shared media while being physically separated by a half wall. Initially, we assessed the level of eosinophil degranulation by their release of eosinophil-derived neurotoxin (EDN). Next, we analyzed the inflammation-associated genes and soluble factors using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and multiplex immunoassays, respectively. Our results suggest an induction of a proinflammatory fibroblast phenotype of HLFs following the coculture with degranulating eosinophils, validating our previous findings. Additionally, we present a new result that indicate potential impacts of activated HLFs back on eosinophils. This open microfluidic coculture platform provides unique opportunities to investigate the intercellular signaling between the two cell types and their roles in airway inflammation and remodeling.
RESUMEN
Streptococcus pyogenes is a major human-specific bacterial pathogen and a common cause of a wide range of symptoms from mild infection such as pharyngitis (commonly called strep throat) to life-threatening invasive infection and post-infectious sequelae. Traditional methods for diagnosis include collecting a sample using a pharyngeal swab, which can cause discomfort and even discourage adults and children from seeking proper testing and treatment in the clinic. Saliva samples are an alternative to pharyngeal swabs. To improve the testing experience for strep throat, we developed a novel lollipop-inspired sampling platform (called CandyCollect) to capture bacteria in saliva. The device can be used in clinics or in the home and shipped back to a lab for analysis, integrating with telemedicine. CandyCollect is designed to capture bacteria on an oxygen plasma treated polystyrene surface embedded with flavoring substances to enhance the experience for children and inform the required time to complete the sampling process. In addition, the open channel structure prevents the tongue from scraping and removing the captured bacteria. The flavoring substances did not affect bacterial capture and the device has a shelf life of at least 2 months (with experiments ongoing to extend the shelf life). We performed a usability study with 17 participants who provided feedback on the device design and the dissolving time of the candy. This technology and advanced processing techniques, including polymerase chain reaction (PCR), will enable user-friendly and effective diagnosis of streptococcal pharyngitis.
Asunto(s)
Faringitis , Infecciones Estreptocócicas , Adulto , Niño , Humanos , Faringitis/diagnóstico , Faringitis/microbiología , Reacción en Cadena de la Polimerasa , Saliva , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genéticaRESUMEN
Lumen structures exist throughout the human body, and the vessels of the circulatory system are essential for carrying nutrients and oxygen and regulating inflammation. Vasodilation, the widening of the blood vessel lumen, is important to the immune response as it increases blood flow to a site of inflammation, raises local temperature, and enables optimal immune system function. A common method for studying vasodilation uses excised vessels from animals; major drawbacks include heterogeneity in vessel shape and size, time-consuming procedures, sacrificing animals, and differences between animal and human biology. We have developed a simple, user-friendly in vitro method to form freestanding cell-laden hydrogel rings from collagen and quantitatively measure the effects of vasodilators on ring size. The hydrogel rings are composed of collagen I and can be laden with human vascular smooth muscle cells, a major cellular and structural component of blood vessels, or lined with endothelial cells in the lumen. The methods presented include a 3D printed device (which is amenable to future fabrication by injection molding) and commercially available components (e.g., Teflon tubing or a syringe) to form hydrogel rings between 2.6-4.6 mm outer diameter and 0.79-1.0 mm inner diameter. Here we demonstrate a significant difference in ring area in the presence of a known vasodilator, fasudil (p < 0.0001). Our method is easy to implement and provides a foundation for a medium-throughput solution to generating vessel model structures for future investigations of the fundamental mechanisms of vasodilation (e.g., studying uncharacterized endogenous molecules that may have vasoactivity) and testing vasoactive drugs.
Asunto(s)
Células Endoteliales , Hidrogeles , Animales , Humanos , Hidrogeles/química , Cuerpo Humano , Colágeno/química , InyeccionesRESUMEN
Expanding whole blood sample collection for transcriptome analysis beyond traditional phlebotomy clinics will open new frontiers for remote immune research and telemedicine. Determining the stability of RNA in blood samples exposed to high ambient temperatures (>30°C) is necessary for deploying home-sampling in settings with elevated temperatures (e.g., studying physiological response to natural disasters that occur in warm locations or in the summer). Recently, we have developed homeRNA, a technology that allows for self-blood sampling and RNA stabilization remotely. homeRNA consists of a lancet-based blood collection device, the Tasso-SST™ which collects up to 0.5 ml of blood from the upper arm, and a custom-built stabilization transfer tube containing RNAlater™. In this study, we investigated the robustness of our homeRNA kit in high temperature settings via two small pilot studies in Doha, Qatar (no. participants = 8), and the Western and South Central USA during the summer of 2021, which included a heatwave of unusually high temperatures in some locations (no. participants = 11). Samples collected from participants in Doha were subjected to rapid external temperature fluctuations from being moved to and from air-conditioned areas and extreme heat environments (up to 41°C external temperature during brief temperature spikes). In the USA pilot study, regions varied in outdoor temperature highs (between 25°C and 43.4°C). All samples that returned a RNA integrity number (RIN) value from the Doha, Qatar group had a RIN ≥7.0, a typical integrity threshold for downstream transcriptomics analysis. RIN values for the Western and South Central USA samples (n = 12 samples) ranged from 6.9-8.7 with 9 out of 12 samples reporting RINs ≥7.0. Overall, our pilot data suggest that homeRNA can be used in some regions that experience elevated temperatures, opening up new geographical frontiers in disseminated transcriptome analysis for applications critical to telemedicine, global health, and expanded clinical research. Further studies, including our ongoing work in Qatar, USA, and Thailand, will continue to test the robustness of homeRNA.
RESUMEN
BACKGROUND: Efforts to minimize COVID-19 exposure during the current SARS-CoV-2 pandemic have led to limitations in access to medical care and testing. The Tasso-SST kit includes all of the components necessary for remote, capillary blood self-collection. In this study, we sought to investigate the accuracy and reliability of the Tasso-SST device as a self-collection device for measurement of SARS-CoV-2 IgG antibodies. METHODS: Capillary blood was obtained via unsupervised and supervised application of the Tasso-SST device, and venous blood was collected by standard venipuncture. Unsupervised self-collected blood samples underwent either extreme summer or winter-simulated shipping conditions prior to testing. Sera obtained by all three methods were tested concurrently using the EuroImmun anti-SARS-CoV-2 S1 IgG assay in a CLIA-certified clinical laboratory. RESULTS: Successful Tasso-SST capillary blood collection by unsupervised and supervised administration was completed by 93.4% and 94.5% of participants, respectively. Sera from 56 participants, 55 with documented (PCR+) COVID-19, and 33 healthy controls were then tested for anti-SARS-CoV-2 IgG antibodies. Compared to venous blood results, Tasso-SST-collected (unstressed) and the summer- and winter-stressed blood samples demonstrated Deming regression slopes of 1.00 (95% CI: 0.99-1.02), 1.00 (95% CI: 0.98-1.01), and 0.99 (95% CI: 0.97-1.01), respectively, with an overall accuracy of 98.9%. CONCLUSIONS: Capillary blood self-collection using the Tasso-SST device had a high success rate. Moreover, excellent concordance was found for anti-SARS-CoV-2 IgG results between Tasso-SST capillary and standard venous blood-derived sera. The Tasso-SST device should enable widespread collection of capillary blood for testing without medical supervision, facilitating epidemiologic studies.