Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
iScience ; 26(4): 106546, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37123247

RESUMEN

Genomic researchers increasingly utilize commercial cloud service providers (CSPs) to manage data and analytics needs. CSPs allow researchers to grow Information Technology (IT) infrastructure on demand to overcome bottlenecks when combining large datasets. However, without adequate security controls, the risk of unauthorized access may be higher for data stored on the cloud. Additionally, regulators are mandating data access patterns and specific security protocols for the storage and use of genomic data. While CSP provides tools for security and regulatory compliance, building the necessary controls required for cloud solutions is not trivial. Research Assets Provisioning and Tracking Online Repository (RAPTOR) by the Genome Institute of Singapore is a cloud-native genomics data repository and analytics platform that implements a "five-safes" framework to provide security and governance controls to data contributors and users, leveraging CSP for sharing and analysis of genomic datasets without the risk of security breaches or running afoul of regulations.

2.
Nat Genet ; 55(2): 178-186, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658435

RESUMEN

Precision medicine promises to transform healthcare for groups and individuals through early disease detection, refining diagnoses and tailoring treatments. Analysis of large-scale genomic-phenotypic databases is a critical enabler of precision medicine. Although Asia is home to 60% of the world's population, many Asian ancestries are under-represented in existing databases, leading to missed opportunities for new discoveries, particularly for diseases most relevant for these populations. The Singapore National Precision Medicine initiative is a whole-of-government 10-year initiative aiming to generate precision medicine data of up to one million individuals, integrating genomic, lifestyle, health, social and environmental data. Beyond technologies, routine adoption of precision medicine in clinical practice requires social, ethical, legal and regulatory barriers to be addressed. Identifying driver use cases in which precision medicine results in standardized changes to clinical workflows or improvements in population health, coupled with health economic analysis to demonstrate value-based healthcare, is a vital prerequisite for responsible health system adoption.


Asunto(s)
Atención a la Salud , Medicina de Precisión , Humanos , Singapur , Medicina de Precisión/métodos , Asia
3.
Nat Commun ; 13(1): 6694, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335097

RESUMEN

Asian populations are under-represented in human genomics research. Here, we characterize clinically significant genetic variation in 9051 genomes representing East Asian, South Asian, and severely under-represented Austronesian-speaking Southeast Asian ancestries. We observe disparate genetic risk burden attributable to ancestry-specific recurrent variants and identify individuals with variants specific to ancestries discordant to their self-reported ethnicity, mostly due to cryptic admixture. About 27% of severe recessive disorder genes with appreciable carrier frequencies in Asians are missed by carrier screening panels, and we estimate 0.5% Asian couples at-risk of having an affected child. Prevalence of medically-actionable variant carriers is 3.4% and a further 1.6% harbour variants with potential for pathogenic classification upon additional clinical/experimental evidence. We profile 23 pharmacogenes with high-confidence gene-drug associations and find 22.4% of Asians at-risk of Centers for Disease Control and Prevention Tier 1 genetic conditions concurrently harbour pharmacogenetic variants with actionable phenotypes, highlighting the benefits of pre-emptive pharmacogenomics. Our findings illuminate the diversity in genetic disease epidemiology and opportunities for precision medicine for a large, diverse Asian population.


Asunto(s)
Pueblo Asiatico , Genoma Humano , Niño , Humanos , Pueblo Asiatico/genética , Genoma Humano/genética , Etnicidad , Farmacogenética , Fenotipo
4.
Phys Rev E ; 106(6-2): 065104, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671126

RESUMEN

We report on numerical simulation of fluid interface deformations induced by either acoustic or optical radiation pressure. This is done by solving simultaneously the scalar wave propagation equation and the two-phase flow equations using the boundary element method. Using dimensional analysis, we show that interface deformation morphogenesis is universal, i.e., depends on the same dimensionless parameters in acoustics and electromagnetics. We numerically investigate a few selected phenomena-in particular the shape of large deformations and the slenderness transition and its hysteresis-and compare with existing and novel experimental observations. Qualitative agreement between the numerical simulations and experiments is found when the mutual interaction between wave propagation and wave-induced deformations is taken into account. Our results demonstrate the leading role of the radiation pressure in morphogenesis of fluid interface deformations and the importance of the propagation-deformation interplay.


Asunto(s)
Acústica , Simulación por Computador
6.
Genome Med ; 13(1): 3, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413596

RESUMEN

BACKGROUND: Family history has traditionally been an essential part of clinical care to assess health risks. However, declining sequencing costs have precipitated a shift towards genomics-first approaches in population screening programs rendering the value of family history unknown. We evaluated the utility of incorporating family history information for genomic sequencing selection. METHODS: To ascertain the relationship between family histories on such population-level initiatives, we analysed whole genome sequences of 1750 research participants with no known pre-existing conditions, of which half received comprehensive family history assessment of up to four generations, focusing on 95 cancer genes. RESULTS: Amongst the 1750 participants, 866 (49.5%) had high-quality standardised family history available. Within this group, 73 (8.4%) participants had an increased family history risk of cancer (increased FH risk cohort) and 1 in 7 participants (n = 10/73) carried a clinically actionable variant inferring a sixfold increase compared with 1 in 47 participants (n = 17/793) assessed at average family history cancer risk (average FH risk cohort) (p = 0.00001) and a sevenfold increase compared to 1 in 52 participants (n = 17/884) where family history was not available (FH not available cohort) (p = 0.00001). The enrichment was further pronounced (up to 18-fold) when assessing only the 25 cancer genes in the American College of Medical Genetics (ACMG) Secondary Findings (SF) genes. Furthermore, 63 (7.3%) participants had an increased family history cancer risk in the absence of an apparent clinically actionable variant. CONCLUSIONS: These findings demonstrate that the collection and analysis of comprehensive family history and genomic data are complementary and in combination can prioritise individuals for genomic analysis. Thus, family history remains a critical component of health risk assessment, providing important actionable data when implementing genomics screening programs. TRIAL REGISTRATION: ClinicalTrials.gov NCT02791152 . Retrospectively registered on May 31, 2016.


Asunto(s)
Atención a la Salud , Genómica , Anamnesis , Medicina de Precisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
7.
Nat Mater ; 20(3): 315-320, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33020613

RESUMEN

For millennia, humans have exploited the natural property of metals to get stronger or harden when mechanically deformed. Ultimately rooted in the motion of dislocations, mechanisms of metal hardening have remained in the cross-hairs of physical metallurgists for over a century. Here, we performed atomistic simulations at the limits of supercomputing that are sufficiently large to be statistically representative of macroscopic crystal plasticity yet fully resolved to examine the origins of metal hardening at its most fundamental level of atomic motion. We demonstrate that the notorious staged (inflection) hardening of metals is a direct consequence of crystal rotation under uniaxial straining. At odds with widely divergent and contradictory views in the literature, we observe that basic mechanisms of dislocation behaviour are the same across all stages of metal hardening.

8.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32161175

RESUMEN

Macrophages in the lung detect and respond to influenza A virus (IAV), determining the nature of the immune response. Using terminal-depth cap analysis of gene expression (CAGE), we quantified transcriptional activity of both host and pathogen over a 24-h time course of IAV infection in primary human monocyte-derived macrophages (MDMs). This method allowed us to observe heterogenous host sequences incorporated into IAV mRNA, "snatched" 5' RNA caps, and corresponding RNA sequences from host RNAs. In order to determine whether cap-snatching is random or exhibits a bias, we systematically compared host sequences incorporated into viral mRNA ("snatched") against a complete survey of all background host RNA in the same cells, at the same time. Using a computational strategy designed to eliminate sources of bias due to read length, sequencing depth, and multimapping, we were able to quantify overrepresentation of host RNA features among the sequences that were snatched by IAV. We demonstrate biased snatching of numerous host RNAs, particularly small nuclear RNAs (snRNAs), and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then used a systems approach to describe the transcriptional landscape of the host response to IAV, observing many new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments.IMPORTANCE Infection with influenza A virus (IAV) infection is responsible for an estimated 500,000 deaths and up to 5 million cases of severe respiratory illness each year. In this study, we looked at human primary immune cells (macrophages) infected with IAV. Our method allows us to look at both the host and the virus in parallel. We used these data to explore a process known as "cap-snatching," where IAV snatches a short nucleotide sequence from capped host RNA. This process was believed to be random. We demonstrate biased snatching of numerous host RNAs, including those associated with snRNA transcription, and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then describe the transcriptional landscape of the host response to IAV, observing new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments.


Asunto(s)
Secuencia de Bases , Virus de la Influenza A/genética , Gripe Humana/virología , Transcripción Genética/fisiología , Sesgo , Redes Reguladoras de Genes , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Virus de la Influenza A/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos , Caperuzas de ARN/genética , ARN Mensajero , ARN Nuclear Pequeño/metabolismo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Replicación Viral
9.
Cell ; 179(3): 736-749.e15, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626772

RESUMEN

Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, we found 98.3 million SNPs and small insertions or deletions, over half of which are novel. Population structure analysis demonstrated great representation of Asian genetic diversity by three ethnicities in Singapore and revealed a Malay-related novel ancestry component. Furthermore, demographic inference suggested that Malays split from Chinese ∼24,800 years ago and experienced significant admixture with East Asians ∼1,700 years ago, coinciding with the Austronesian expansion. Additionally, we identified 20 candidate loci for natural selection, 14 of which harbored robust associations with complex traits and diseases. Finally, we show that our data can substantially improve genotype imputation in diverse Asian and Oceanian populations. These results highlight the value of our data as a resource to empower human genetics discovery across broad geographic regions.


Asunto(s)
Genética de Población , Genoma Humano/genética , Selección Genética , Secuenciación Completa del Genoma , Pueblo Asiatico/genética , Femenino , Genotipo , Humanos , Malasia/epidemiología , Masculino , Polimorfismo de Nucleótido Simple/genética , Singapur/epidemiología
10.
Nano Lett ; 19(1): 255-260, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30525680

RESUMEN

Nanoprecipitates play a significant role in the strength, ductility, and damage tolerance of metallic alloys through their interaction with crystalline defects, especially dislocations. However, the difficulty of observing the action of individual precipitates during plastic deformation has made it challenging to conclusively determine the mechanisms of the precipitate-defect interaction for a given alloy system and presents a major bottleneck in the rational design of nanostructured alloys. Here, we demonstrate the in situ compression of core-shell nanocubes as a promising platform to determine the precise role of individual precipitates. Each nanocube with a dimension of ∼85 nm contains a single spherical precipitate of ∼25 nm diameter. The Au-core/Ag-shell nanocubes show a yield strength of 495 MPa with no strain hardening. The deformation mechanism is determined to be surface nucleation of dislocations which easily traverses through the coherent Au-Ag interface. On the other hand, the Au-core/Cu-shell nanocubes show a yield strength of 829 MPa with a pronounced strain hardening rate. Molecular dynamics and dislocation dynamics simulations, in conjunction with TEM analysis, have demonstrated the yield mechanism to be the motion of threading dislocations extending from the semicoherent Au-Cu interface to the surface, and strain hardening to be caused by a single-armed Orowan looping mechanism. Nanocube compression offers an exciting opportunity to directly compare computational models of defect dynamics with in situ deformation measurements to elucidate the precise mechanisms of precipitate hardening.

11.
Phys Rev Lett ; 121(8): 085501, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30192605

RESUMEN

When metals plastically deform, the density of line defects called dislocations increases and the microstructure is continuously refined, leading to the strain hardening behavior. Using discrete dislocation dynamics simulations, we demonstrate the fundamental role of junction formation in connecting dislocation microstructure evolution and strain hardening in face-centered cubic (fcc) Cu. The dislocation network formed consists of line segments whose lengths closely follow an exponential distribution. This exponential distribution is a consequence of junction formation, which can be modeled as a one-dimensional Poisson process. According to the exponential distribution, two non-dimensional parameters control microstructure evolution, with the hardening rate dictated by the rate of stable junction formation. Among the types of junctions in fcc crystals, we find that glissile junctions make the dominant contribution to strain hardening.

12.
Sci Data ; 4: 170147, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28972578

RESUMEN

The FANTOM5 expression atlas is a quantitative measurement of the activity of nearly 200,000 promoter regions across nearly 2,000 different human primary cells, tissue types and cell lines. Generation of this atlas was made possible by the use of CAGE, an experimental approach to localise transcription start sites at single-nucleotide resolution by sequencing the 5' ends of capped RNAs after their conversion to cDNAs. While 50% of CAGE-defined promoter regions could be confidently associated to adjacent transcriptional units, nearly 100,000 promoter regions remained gene-orphan. To address this, we used the CAGEscan method, in which random-primed 5'-cDNAs are paired-end sequenced. Pairs starting in the same region are assembled in transcript models called CAGEscan clusters. Here, we present the production and quality control of CAGEscan libraries from 56 FANTOM5 RNA sources, which enhances the FANTOM5 expression atlas by providing experimental evidence associating core promoter regions with their cognate transcripts.


Asunto(s)
Regiones Promotoras Genéticas , Transcripción Genética , ADN Complementario , Humanos , Especificidad de Órganos , Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción
13.
Nat Biotechnol ; 35(9): 872-878, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28829439

RESUMEN

MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Animales , Células Cultivadas , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , MicroARNs/metabolismo
14.
Sci Rep ; 7(1): 2186, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526829

RESUMEN

Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Histonas/química , Humanos , Complejos Multiproteicos/química
15.
Lab Chip ; 17(8): 1515-1528, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28374878

RESUMEN

Acoustic micropropulsors present great potential for microfluidic applications. The propulsion is based on encapsulated 20 µm bubbles excited by a contacless ultrasonic transducer. The vibrating bubbles then generate a powerful streaming flow, with speeds 1-100 mm s-1 in water, through the action of viscous stresses. In this paper we introduce a full toolbox of micropropulsors using a versatile three-dimensional (3D) microfabrication setup. Doublets and triplets of propulsors are introduced, and the flows they generate are predicted by a theoretical hydrodynamic model. We then introduce whole surfaces covered with propulsors, which we term active surfaces. These surfaces are excited by a single ultrasonic wave, can generate collective flows and may be harnessed for mixing purposes. Several patterns of propulsors are tested, and the flows produced by the two most efficient mixers are predicted by a simple theoretical model based on flow singularities. In particular, the vortices generated by the most efficient pattern, an L-shaped mixer, are analysed in detail.

16.
Nature ; 543(7644): 199-204, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28241135

RESUMEN

Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5' ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.


Asunto(s)
Bases de Datos Genéticas , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Transcriptoma/genética , Células Cultivadas , Secuencia Conservada/genética , Conjuntos de Datos como Asunto , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Internet , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas/genética , Sitios de Carácter Cuantitativo/genética , Estabilidad del ARN , ARN Mensajero/genética
17.
Sci Data ; 2: 150063, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26594381

RESUMEN

Gene expression is the most fundamental level at which the genotype leads to the phenotype of the organism. Enabled by ultra-high-throughput next-generation DNA sequencing, RNA-Seq involves shotgun sequencing of fragmented RNA transcripts by next-generation sequencing followed by in silico assembly, and is rapidly becoming the most popular method for gene expression analysis. Poly[A]+ RNA-Seq analyses of normal human adult tissue samples such as Illumina's Human BodyMap 2.0 Project and the RNA-Seq atlas have provided a useful global resource and framework for comparisons with diseased tissues such as cancer. However, these analyses have failed to provide information on poly[A]-RNA, which is abundant in our cells. The most recent advances in RNA-Seq analyses use ribosomal RNA-depletion to provide information on both poly[A]+ and poly[A]-RNA. In this paper, we describe the use of Illumina's HiSeq 2000 to generate high quality rRNA-depleted RNA-Seq datasets from human fetal and adult tissues. The datasets reported here will be useful in understanding the different expression profiles in different tissues.


Asunto(s)
ARN Ribosómico/genética , Análisis de Secuencia de ARN , Adulto , Feto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Especificidad de Órganos
18.
Genome Biol ; 16: 22, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25723102

RESUMEN

The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.riken.jp/5/). This resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas.


Asunto(s)
Genómica/métodos , Regiones Promotoras Genéticas , Programas Informáticos , Iniciación de la Transcripción Genética , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Humanos , Ratones , Transcriptoma , Interfaz Usuario-Computador
19.
BMC Genomics ; 15: 1177, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25539566

RESUMEN

BACKGROUND: Mutations in three functionally diverse genes cause Rett Syndrome. Although the functions of Forkhead box G1 (FOXG1), Methyl CpG binding protein 2 (MECP2) and Cyclin-dependent kinase-like 5 (CDKL5) have been studied individually, not much is known about their relation to each other with respect to expression levels and regulatory regions. Here we analyzed data from hundreds of mouse and human samples included in the FANTOM5 project, to identify transcript initiation sites, expression levels, expression correlations and regulatory regions of the three genes. RESULTS: Our investigations reveal the predominantly used transcription start sites (TSSs) for each gene including novel transcription start sites for FOXG1. We show that FOXG1 expression is poorly correlated with the expression of MECP2 and CDKL5. We identify promoter shapes for each TSS, the predicted location of enhancers for each gene and the common transcription factors likely to regulate the three genes. Our data imply Polycomb Repressive Complex 2 (PRC2) mediated silencing of Foxg1 in cerebellum. CONCLUSIONS: Our analyses provide a comprehensive picture of the regulatory regions of the three genes involved in Rett Syndrome.


Asunto(s)
Perfilación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Síndrome de Rett/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Islas de CpG/genética , Factores de Transcripción Forkhead/genética , Genómica , Histonas/genética , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Síndrome de Rett/patología , TATA Box/genética , Sitio de Iniciación de la Transcripción
20.
Genome Res ; 24(8): 1396-410, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24904046

RESUMEN

Underlying the complexity of the mammalian brain is its network of neuronal connections, but also the molecular networks of signaling pathways, protein interactions, and regulated gene expression within each individual neuron. The diversity and complexity of the spatially intermingled neurons pose a serious challenge to the identification and quantification of single neuron components. To address this challenge, we present a novel approach for the study of the ribosome-associated transcriptome-the translatome-from selected subcellular domains of specific neurons, and apply it to the Purkinje cells (PCs) in the rat cerebellum. We combined microdissection, translating ribosome affinity purification (TRAP) in nontransgenic animals, and quantitative nanoCAGE sequencing to obtain a snapshot of RNAs bound to cytoplasmic or rough endoplasmic reticulum (rER)-associated ribosomes in the PC and its dendrites. This allowed us to discover novel markers of PCs, to determine structural aspects of genes, to find hitherto uncharacterized transcripts, and to quantify biophysically relevant genes of membrane proteins controlling ion homeostasis and neuronal electrical activities.


Asunto(s)
Perfilación de la Expresión Génica , Células de Purkinje/metabolismo , Animales , Sitios de Unión , Mapeo Cromosómico , Análisis por Conglomerados , Citoplasma/metabolismo , Dendritas/metabolismo , Retículo Endoplásmico Rugoso/metabolismo , Familia de Multigenes , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , ARN no Traducido/genética , ARN no Traducido/metabolismo , Ratas , Ribosomas/fisiología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...