Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38519142

RESUMEN

The NLRP3 inflammasome plays a central role in various human diseases. Despite significant interest, most clinical-grade NLRP3 inhibitors are derived from sulfonylurea inhibitor CRID3 (also called MCC950). Here, we describe a novel chemical class of NLRP3-inhibiting compounds (NIC) that exhibit potent and selective NLRP3 inflammasome inhibition in human monocytes and mouse macrophages. BRET assays demonstrate that they physically interact with NLRP3. Structural modeling further reveals they occupy the same binding site of CRID3 but in a critically different conformation. Furthermore, we show that NIC-11 and NIC-12 lack the off-target activity of CRID3 against the enzymatic activity of carbonic anhydrases I and II. NIC-12 selectively reduces circulating IL-1ß levels in the LPS-endotoxemia model in mice and inhibits NLRP3 inflammasome activation in CAPS patient monocytes and mouse macrophages with about tenfold increased potency compared with CRID3. Altogether, this study unveils a new chemical class of highly potent and selective NLRP3-targeted inhibitors with a well-defined molecular mechanism to complement existing CRID3-based NLRP3 inhibitors in pharmacological studies and serve as novel chemical leads for the development of NLRP3-targeted therapies.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Sulfonamidas/farmacología
3.
Sci Adv ; 10(9): eadj6289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416826

RESUMEN

Gain-of-function mutations in NLRP3 are linked to cryopyrin-associated periodic syndromes (CAPS). Although NLRP3 autoinflammasome assembly triggers inflammatory cytokine release, its activation mechanisms are not fully understood. Our study used a functional genetic approach to identify regulators of NLRP3 inflammasome formation. We identified the HSP90ß-SGT1 chaperone complex as crucial for autoinflammasome activation in CAPS. A deficiency in HSP90ß, but not in HSP90α, impaired the formation of ASC specks without affecting the priming and expression of inflammasome components. Conversely, activating NLRP3 with stimuli such as nigericin or alum bypassed the need for SGT1 and HSP90ß, suggesting the existence of alternative inflammasome assembly pathways. The role of HSP90ß was further demonstrated in PBMCs derived from CAPS patients. In these samples, the pathological constitutive secretion of IL-1ß could be suppressed using a pharmacological inhibitor of HSP90ß. This finding underscores the potential of SGT1-HSP90ß modulation as a therapeutic strategy in CAPS while preserving NLRP3's physiological functions.


Asunto(s)
Síndromes Periódicos Asociados a Criopirina , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Síndromes Periódicos Asociados a Criopirina/genética , Síndromes Periódicos Asociados a Criopirina/tratamiento farmacológico , Síndromes Periódicos Asociados a Criopirina/patología , Citocinas , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética
4.
J Clin Immunol ; 44(2): 49, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231350

RESUMEN

Syndrome of undifferentiated recurrent fever (SURF) is characterized by recurrent fevers, a lack of confirmed molecular diagnosis, and a complete or partial response to colchicine. Despite the clinical similarities to familial Mediterranean fever (FMF), the underlying inflammatory mechanisms of SURF are not yet understood. We here analyzed the in vitro activation of the pyrin inflammasome in a cohort of SURF patients compared to FMF and PFAPA patients. Peripheral blood mononuclear cells (PBMC) were collected from SURF (both colchicine-treated and untreated), FMF, PFAPA patients, and healthy donors. PBMC were stimulated ex vivo with Clostridium difficile toxin A (TcdA) and a PKC inhibitor (UCN-01), in the presence or absence of colchicine. The assembly of the pyrin inflammasome was evaluated by measuring the presence of apoptosis-associated Speck-like protein containing caspase recruitment domain (ASC) specks in monocytes using flow cytometry. IL-1ß secretion was quantified using an ELISA assay. No differences in TcdA-induced activation of pyrin inflammasome were observed among FMF, PFAPA, and healthy donors. Untreated SURF patients showed a reduced response to TcdA, which was normalized after colchicine treatment. In contrast to FMF, SURF patients, similar to PFAPA patients and healthy donors, did not exhibit pyrin inflammasome activation in response to UCN-01-mediated pyrin dephosphorylation. These data demonstrate that in vitro functional analysis of pyrin inflammasome activation can differentiate SURF from FMF and PFAPA patients, suggesting the involvement of the pyrin inflammasome in the pathophysiology of SURF.


Asunto(s)
Colchicina , Fiebre Mediterránea Familiar , Humanos , Colchicina/farmacología , Colchicina/uso terapéutico , Fiebre Mediterránea Familiar/diagnóstico , Fiebre Mediterránea Familiar/tratamiento farmacológico , Inflamasomas , Leucocitos Mononucleares , Pirina/genética
5.
Methods Mol Biol ; 2696: 281-297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37578730

RESUMEN

Autoinflammatory diseases are a group of distinct disorders characterized by recurrent fever and inflammatory manifestations predominantly mediated by cytokines of the innate immune system, particularly IL-1ß, without involvement of autoantibodies or autoreactive T lymphocytes. Cryopyrin-associated periodic syndromes (CAPS), due to NLRP3 gene mutations, represent the prototype of these diseases. Owing to their genetic nature, most of these disorders have an early onset, ranging from the first hours to the first decade of life. Due to the rarity of CAPS patients and to the limitations of working with pediatric samples, the development of animal models of this disease is of great help for studying both pathophysiology and therapeutic strategies. In this chapter, we review the generation and characterization of a knock-in mouse bearing the NLRP3 gene with the N475K mutation, associated with CINCA, the most severe form of human CAPS.


Asunto(s)
Síndromes Periódicos Asociados a Criopirina , Humanos , Ratones , Animales , Niño , Síndromes Periódicos Asociados a Criopirina/genética , Síndromes Periódicos Asociados a Criopirina/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Interleucina-1beta/genética , Citocinas/genética , Mutación , Modelos Animales de Enfermedad
6.
Front Immunol ; 13: 935957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898506

RESUMEN

Deficiency of Adenosine deaminase 2 (DADA2) is a monogenic autoinflammatory disorder presenting with a broad spectrum of clinical manifestations, including immunodeficiency, vasculopathy and hematologic disease. Biallelic mutations in ADA2 gene have been associated with a decreased ADA2 activity, leading to reduction in deamination of adenosine and deoxyadenosine into inosine and deoxyinosine and subsequent accumulation of extracellular adenosine. In the early reports, the pivotal role of innate immunity in DADA2 pathogenic mechanism has been underlined, showing a skewed polarization from the M2 macrophage subtype to the proinflammatory M1 subtype, with an increased production of inflammatory cytokines such as TNF-α. Subsequently, a dysregulation of NETosis, triggered by the excess of extracellular Adenosine, has been implicated in the pathogenesis of DADA2. In the last few years, evidence is piling up that adaptive immunity is profoundly altered in DADA2 patients, encompassing both T and B branches, with a disrupted homeostasis in T-cell subsets and a B-cell skewing defect. Type I/type II IFN pathway upregulation has been proposed as a possible core signature in DADA2 T cells and monocytes but also an increased IFN-ß secretion directly from endothelial cells has been described. So far, a unifying clear pathophysiological explanation for the coexistence of systemic inflammation, immunedysregulation and hematological defects is lacking. In this review, we will explore thoroughly the latest understanding regarding DADA2 pathophysiological process, with a particular focus on dysregulation of both innate and adaptive immunity and their interacting role in the development of the disease.


Asunto(s)
Adenosina Desaminasa , Poliarteritis Nudosa , Inmunidad Adaptativa , Adenosina , Adenosina Desaminasa/genética , Agammaglobulinemia , Células Endoteliales , Humanos , Péptidos y Proteínas de Señalización Intercelular , Inmunodeficiencia Combinada Grave
7.
J Allergy Clin Immunol ; 150(4): 796-805, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35835255

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may result in a severe pneumonia associated with elevation of blood inflammatory parameters, reminiscent of cytokine storm syndrome. Steroidal anti-inflammatory therapies have shown efficacy in reducing mortality in critically ill patients; however, the mechanisms by which SARS-CoV-2 triggers such an extensive inflammation remain unexplained. OBJECTIVES: To dissect the mechanisms underlying SARS-CoV-2-associated inflammation in patients with severe coronavirus disease 2019 (COVID-19), we studied the role of IL-1ß, a pivotal cytokine driving inflammatory phenotypes, whose maturation and secretion are regulated by inflammasomes. METHODS: We analyzed nod-like receptor protein 3 pathway activation by means of confocal microscopy, plasma cytokine measurement, cytokine secretion following in vitro stimulation of blood circulating monocytes, and whole-blood RNA sequencing. The role of open reading frame 3a SARS-CoV-2 protein was assessed by confocal microscopy analysis following nucleofection of a monocytic cell line. RESULTS: We found that circulating monocytes from patients with COVID-19 display ASC (adaptor molecule apoptotic speck like protein-containing a CARD) specks that colocalize with nod-like receptor protein 3 inflammasome and spontaneously secrete IL-1ß in vitro. This spontaneous activation reverts following patient's treatment with the IL-1 receptor antagonist anakinra. Transfection of a monocytic cell line with cDNA coding for the ORF3a SARS-CoV-2 protein resulted in ASC speck formation. CONCLUSIONS: These results provide further evidence that IL-1ß targeting could represent an effective strategy in this disease and suggest a mechanistic explanation for the strong inflammatory manifestations associated with COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inflamasomas , Antiinflamatorios , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Citocinas/metabolismo , ADN Complementario , Humanos , Inflamasomas/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Receptores de Interleucina-1 , SARS-CoV-2
8.
Front Immunol ; 13: 921253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812440

RESUMEN

Hereditary periodic recurrent fevers (HRF) are monogenic autoinflammatory associated to mutations of some genes, such as diseases caused by mutations of including MEFV, TNFRSF1A and MVK genes. Despite the identification of the causative genes, the intracellular implications related to each gene variant are still largely unknown. A large -scale proteomic analysis on monocytes of these patients is aimed to identify with an unbiased approach the mean proteins and molecular interaction networks involved in the pathogenesis of these conditions. Monocytes from HRF 15 patients (5 with MFV, 5 TNFRSF1A and 5with MVK gene mutation) and 15 healthy donors (HDs) were analyzed by liquid chromatography and tandem mass spectrometry before and after lipopolysaccharide (LPS) stimulation. Significant proteins were analyzed through a Cytoscape analysis using the ClueGo app to identify molecular interaction networks. Protein networks for each HRF were performed through a STRING database analysis integrated with a DISEAE database query. About 5000 proteins for each HRF were identified. LPS treatment maximizes differences between up-regulated proteins in monocytes of HRF patients and HDs, independently from the disease's activity and ongoing treatments. Proteins significantly modulated in monocytes of the different HRF allowed creating a disease-specific proteomic signatures and interactive protein network. Proteomic analysis is able to dissect the different intracellular pathways involved in the inflammatory response of circulating monocytes in HRF patients. The present data may help to identify a "monocyte proteomic signature" for each condition and unravel new possible unexplored intracellular pathways possibly involved in their pathogenesis. These data will be also useful to identify possible differences and similarities between the different HRFs and some multifactorial recurrent fevers.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias , Monocitos , Fiebre , Enfermedades Autoinflamatorias Hereditarias/genética , Humanos , Lipopolisacáridos/metabolismo , Monocitos/metabolismo , Proteómica , Pirina/metabolismo
9.
Eur J Immunol ; 51(1): 206-219, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32707604

RESUMEN

Adenosine deaminase 2 deficiency (DADA2) is an autoinflammatory disease characterized by inflammatory vasculopathy, early strokes associated often with hypogammaglobulinemia. Pure red cell aplasia, thrombocytopenia, and neutropenia have been reported. The defect is due to biallelic loss of function of ADA2 gene, coding for a protein known to regulate the catabolism of extracellular adenosine. We therefore investigated immune phenotype and B- and T-cell responses in 14 DADA2 patients to address if ADA2 mutation affects B- and T-cell function. Here, we show a significant decrease in memory B cells, in particular class switch memory, and an expansion of CD21low B cells in DADA2 patients. In vitro stimulated B lymphocytes were able to secrete nonfunctional ADA2 protein, suggesting a cell intrinsic defect resulting in an impairment of B-cell proliferation and differentiation. Moreover, CD4+ and CD8+ T cells were diminished; however, the frequency of circulating T follicular helper cells was significantly increased but they had an impairment in IL-21 production possibly contributing to an impaired B cell help. Our findings suggest that ADA2 mutation could lead to a B-cell intrinsic defect but also to a defective Tfh cell function, which could contribute to the immunodeficient phenotype reported in DADA2 patients.


Asunto(s)
Adenosina Desaminasa/deficiencia , Agammaglobulinemia/inmunología , Linfocitos B/inmunología , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Inmunodeficiencia Combinada Grave/inmunología , Células T Auxiliares Foliculares/inmunología , Adenosina Desaminasa/genética , Adenosina Desaminasa/inmunología , Adolescente , Adulto , Agammaglobulinemia/enzimología , Agammaglobulinemia/genética , Linfocitos B/enzimología , Linfocitos B/patología , Estudios de Casos y Controles , Diferenciación Celular , Proliferación Celular , Niño , Preescolar , Femenino , Humanos , Memoria Inmunológica , Inmunofenotipificación , Técnicas In Vitro , Lactante , Recién Nacido , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Interleucinas/biosíntesis , Activación de Linfocitos , Masculino , Mutación , Inmunodeficiencia Combinada Grave/enzimología , Inmunodeficiencia Combinada Grave/genética , Células T Auxiliares Foliculares/patología
10.
J Allergy Clin Immunol ; 145(1): 368-378.e13, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31194989

RESUMEN

BACKGROUND: Cryopyrin-associated periodic syndromes (CAPS) are a group of autoinflammatory diseases linked to gain-of-function mutations in the NOD-like receptor family, pyrin domain containing 3 (NLRP3) gene, which cause uncontrolled IL-1ß secretion. Proton pump inhibitors (PPIs), which are commonly used as inhibitors of gastric acid production, also have anti-inflammatory properties, protect mice from sepsis, and prevent IL-1ß secretion by monocytes from patients with CAPS. OBJECTIVE: We sought to develop a novel Nlrp3 knock-in (KI) mouse model of CAPS to study amyloidosis, a severe CAPS complication, and test novel therapeutic approaches. METHODS: We generated KI mice by engineering the N475K mutation, which is associated with the CAPS phenotype, into the mouse Nlrp3 gene. KI and wild-type mice received PPIs or PBS intraperitoneally and were analyzed for survival, inflammation, cytokine secretion, and amyloidosis development. RESULTS: Mutant Nlrp3 KI mice displayed features that recapitulate the immunologic and clinical phenotype of CAPS. They showed systemic inflammation with high levels of serum proinflammatory cytokines, inflammatory infiltrates in various organs, and amyloid deposits in the spleen, liver, and kidneys. Toll-like receptor stimulated macrophages from KI mice secreted high levels of IL-1ß, IL-18, and IL-1α but low amounts of IL-1 receptor antagonist. Treatment of KI mice with PPIs had a clear clinical effect, showing a reduction in inflammatory manifestations, regression of amyloid deposits, and normalization of proinflammatory and anti-inflammatory cytokine production by macrophages. CONCLUSION: Nlrp3 KI mice displayed a CAPS phenotype with many characteristics of autoinflammation, including amyloidosis. The therapeutic effectiveness of PPIs associated with a lack of toxicity indicates that these drugs could represent relevant adjuvants to the anti-IL-1 drugs in patients with CAPS and other IL-1-driven diseases.


Asunto(s)
Amiloidosis , Síndromes Periódicos Asociados a Criopirina , Proteína con Dominio Pirina 3 de la Familia NLR , Inhibidores de la Bomba de Protones/farmacología , Amiloidosis/tratamiento farmacológico , Amiloidosis/genética , Amiloidosis/inmunología , Animales , Síndromes Periódicos Asociados a Criopirina/tratamiento farmacológico , Síndromes Periódicos Asociados a Criopirina/genética , Síndromes Periódicos Asociados a Criopirina/inmunología , Síndromes Periódicos Asociados a Criopirina/patología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Ratones , Ratones Mutantes , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología
11.
Stem Cells ; 35(5): 1365-1377, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28100034

RESUMEN

Autosomal recessive osteopetrosis (ARO) is a severe bone disease characterized by increased bone density due to impairment in osteoclast resorptive function or differentiation. Hematopoietic stem cell transplantation is the only available treatment; however, this therapy is not effective in RANKL-dependent ARO, since in bone this gene is mainly expressed by cells of mesenchymal origin. Of note, whether lack of RANKL production might cause a defect also in the bone marrow (BM) stromal compartment, possibly contributing to the pathology, is unknown. To verify this possibility, we generated and characterized BM mesenchymal stromal cell (BM-MSC) lines from wild type and Rankl-/- mice, and found that Rankl-/- BM-MSCs displayed reduced clonogenicity and osteogenic capacity. The differentiation defect was significantly improved by lentiviral transduction of Rankl-/- BM-MSCs with a vector stably expressing human soluble RANKL (hsRANKL). Expression of Rankl receptor, Rank, on the cytoplasmic membrane of BM-MSCs pointed to the existence of an autocrine loop possibly activated by the secreted cytokine. Based on the close resemblance of RANKL-defective osteopetrosis in humans and mice, we expect that our results are also relevant for RANKL-dependent ARO patients. Data obtained in vitro after transduction with a lentiviral vector expressing hsRANKL would suggest that restoration of RANKL production might not only rescue the defective osteoclastogenesis of this ARO form, but also improve a less obvious defect in the osteoblast lineage, thus possibly achieving higher benefit for the patients, when the approach is translated to clinics. Stem Cells 2017;35:1365-1377.


Asunto(s)
Diferenciación Celular , Vectores Genéticos/metabolismo , Lentivirus/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Ligando RANK/deficiencia , Animales , Biomarcadores/metabolismo , Células Clonales , Inmunofenotipificación , Ratones Endogámicos C57BL , Ligando RANK/metabolismo , Transducción de Señal , Transducción Genética
12.
Proc Natl Acad Sci U S A ; 108(42): 17384-9, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21960443

RESUMEN

Dendritic cells (DC) are highly specialized antigen-presenting cells characterized by the ability to prime T-cell responses. Mesenchymal stem cells (MSC) are adult stromal progenitor cells displaying immunomodulatory activities including inhibition of DC maturation in vitro. However, the specific impact of MSC on DC functions, upon in vivo administration, has never been elucidated. Here we show that murine MSC impair Toll-like receptor-4 induced activation of DC resulting in the inhibition of cytokines secretion, down-regulation of molecules involved in the migration to the lymph nodes, antigen presentation to CD4(+) T cells, and cross-presentation to CD8(+) T cells. These effects are associated with the inhibition of phosphorylation of intracellular mitogen-activated protein kinases. Intravenous administration of MSC decreased the number of CCR7 and CD49dß1 expressing CFSE-labeled DC in the draining lymph nodes and hindered local antigen priming of DO11.10 ovalbumin-specific CD4(+) T cells. Upon labeling of DC with technetium-99m hexamethylpropylene amine oxime to follow their in vivo biodistribution, we demonstrated that intravenous injection of MSC blocks, almost instantaneously, the migration of subcutaneously administered ovalbumin-pulsed DC to the draining lymph nodes. These findings indicate that MSC significantly affect DC ability to prime T cells in vivo because of their inability to home to the draining lymph nodes and further confirm MSC potentiality as therapy for immune-mediated diseases.


Asunto(s)
Células Dendríticas/inmunología , Células Madre Mesenquimatosas/inmunología , Linfocitos T/inmunología , Animales , Presentación de Antígeno , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Movimiento Celular/inmunología , Técnicas de Cocultivo , Citocinas/genética , Células Dendríticas/citología , Células Dendríticas/fisiología , Células Dendríticas/trasplante , Expresión Génica , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA