Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(6): 172, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261502

RESUMEN

Extensive research provides evidence that neuroinflammation underlies numerous brain disorders. However, the molecular mechanisms by which inflammatory mediators determine synaptic and cognitive dysfunction occurring in neurodegenerative diseases (e.g., Alzheimer's disease) are far from being fully understood. Here we investigated the role of interleukin 1ß (IL-1ß), and the molecular cascade downstream the activation of its receptor, to the synaptic dysfunction occurring in the mouse model of multiple Herpes simplex virus type-1 (HSV-1) reactivations within the brain. These mice are characterized by neuroinflammation and memory deficits associated with a progressive accumulation of neurodegenerative hallmarks (e.g., amyloid-ß protein and tau hyperphosphorylation). Here we show that mice undergone two HSV-1 reactivations in the brain exhibited increased levels of IL-1ß along with significant alterations of: (1) cognitive performances; (2) hippocampal long-term potentiation; (3) expression synaptic-related genes and pre- and post-synaptic proteins; (4) dendritic spine density and morphology. These effects correlated with activation of the epigenetic repressor MeCP2 that, in association with HDAC4, affected the expression of synaptic plasticity-related genes. Specifically, in response to HSV-1 infection, HDAC4 accumulated in the nucleus and promoted MeCP2 SUMOylation that is a post-translational modification critically affecting the repressive activity of MeCP2. The blockade of IL-1 receptors by the specific antagonist Anakinra prevented the MeCP2 increase and the consequent downregulation of gene expression along with rescuing structural and functional indices of neurodegeneration. Collectively, our findings provide novel mechanistic evidence on the role played by HSV-1-activated IL-1ß signaling pathways in synaptic deficits leading to cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Herpes Simple , Herpesvirus Humano 1 , Ratones , Animales , Herpesvirus Humano 1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Herpes Simple/complicaciones , Trastornos de la Memoria/genética , Plasticidad Neuronal/fisiología , Epigénesis Genética , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo
2.
Neuropathol Appl Neurobiol ; 49(1): e12861, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36331820

RESUMEN

AIMS: Early dysfunction in Alzheimer's disease (AD) is characterised by alterations of synapse structure and function leading to dysmorphic neurites, decreased spine density, impaired synaptic plasticity and cognitive deficits. The class II member HDAC4, which recently emerged as a crucial factor in shaping synaptic plasticity and memory, was found to be altered in AD. We investigated how the modulation of HDAC4 may contribute to counteracting AD pathogenesis. METHODS: Using a cytoplasmic HDAC4 mutant (HDAC4SD ), we studied the recovery of synaptic function in hippocampal tissue and primary neurons from the triple-transgenic mouse model of AD (3×Tg-AD). RESULTS: Here, we report that in wild-type mice, HDAC4 is localised at synapses and interacts with postsynaptic proteins, whereas in the 3×Tg-AD, it undergoes nuclear import, reducing its interaction with synaptic proteins. Of note, HDAC4 delocalisation was induced by both amyloid-ß and tau accumulation. Overexpression of the HDAC4SD mutant in CA1 pyramidal neurons of organotypic hippocampal slices obtained from 3×Tg-AD mice increased dendritic length and promoted the enrichment of N-cadherin, GluA1, PSD95 and CaMKII proteins at the synaptic level compared with AD neurons transfected with the empty vector. Moreover, HDAC4 overexpression recovered the level of SUMO2/3ylation of PSD95 in AD hippocampal tissue, and in AD organotypic hippocampal slices, the HDAC4SD rescued spine density and synaptic transmission. CONCLUSIONS: These results highlight a new role of cytoplasmic HDAC4 in providing a structural and enzymatic regulation of postsynaptic proteins. Our findings suggest that controlling HDAC4 localisation may represent a promising strategy to rescue synaptic function in AD, potentially leading to memory improvement.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Hipocampo/patología , Ratones Transgénicos , Sinapsis/patología , Transmisión Sináptica/fisiología , Citoplasma/metabolismo
3.
Neurobiol Dis ; 175: 105932, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36427690

RESUMEN

Histamine, a monoamine implicated in stress-related arousal states, is synthesized in neurons exclusively located in the hypothalamic tuberomammillary nucleus (TMN) from where they diffusely innervate striatal and mesolimbic networks including the nucleus accumbens (NAc), a vital node in the limbic loop. Since histamine-containing TMN neuron output increases during stress, we hypothesized that exposure of mice to acute restrain stress (ARS) recruits endogenous histamine type 2 receptor (H2R) signaling in the NAc, whose activation increases medium spiny neurons (MSNs) intrinsic excitability via downregulation of A-type K+ currents. We employed an ARS paradigm in which mice were restrained for 120 min, followed by a 20-min recovery period, after which brain slices were prepared for ex vivo electrophysiology. Using whole-cell patch-clamp recordings, we found that pharmacological activation of H2R failed to affect MSN excitability and A-type K+ currents in mice that underwent ARS. Interestingly, in mice treated with H2R-antagonist prior to ARS paradigm, H2R activation increased evoked firing and decreased A-type K+ currents similarly to what observed in control mice. Furthermore, H2R-antagonist treatment ameliorated anxiety-like behavior in ARS mice. Together, our findings indicate that ARS paradigm recruits endogenous H2R signaling in MSNs and suggest the involvement of H2R signaling in stress-related motivational states.


Asunto(s)
Histamina , Núcleo Accumbens , Ratones , Animales , Potenciales de Acción/fisiología , Neuronas Espinosas Medianas , Técnicas de Placa-Clamp
4.
Stem Cell Res ; 63: 102846, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35759972

RESUMEN

Mucopolysaccharidosis type II (Hunter Syndrome) is a rare X-linked inherited lysosomal storage disorder presenting a wide genetic heterogeneity. It is due to pathogenic variants in the IDS gene, causing the deficit of the lysosomal hydrolase iduronate 2-sulfatase, degrading the glycosaminoglycans (GAGs) heparan- and dermatan-sulfate. Based on the presence/absence of neurocognitive signs, commonly two forms are recognized, the severe and the attenuate ones. Here we describe a line of induced pluripotent stem cells, generated from dermal fibroblasts, carrying the mutation c.479C>T, and obtained from a patient showing an attenuated phenotype. The line will be useful to study the disease neuropathogenesis.


Asunto(s)
Iduronato Sulfatasa , Células Madre Pluripotentes Inducidas , Mucopolisacaridosis II , Glicosaminoglicanos , Humanos , Iduronato Sulfatasa/genética , Ácido Idurónico , Células Madre Pluripotentes Inducidas/patología , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/patología , Fenotipo
5.
J Physiol ; 600(9): 2225-2243, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35343587

RESUMEN

Histaminergic neurons are exclusively located in the hypothalamic tuberomammillary nucleus, from where they project to many brain areas including the nucleus accumbens (NAc), a brain area that integrates diverse monoaminergic inputs to coordinate motivated behaviours. While the NAc expresses various histamine receptor subtypes, the mechanisms by which histamine modulates NAc activity are still poorly understood. Using whole-cell patch-clamp recordings, we found that pharmacological activation of histamine 2 (H2) receptors elevates the excitability of NAc medium spiny neurons (MSNs), while activation of H1 receptors failed to significantly affect MSN excitability. The evoked firing of MSNs increased after seconds of local H2 agonist administration and remained elevated for minutes. H2 receptor (H2R) activation accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, diminished action potential afterhyperpolarization and increased the action potential half-width. The increased excitability was protein kinase A-dependent and associated with decreased A-type K+ currents. In addition, selective pharmacological inhibition of the Kv4.2 channel, the main molecular determinant of A-type K+ currents in MSNs, mimicked and occluded the increased excitability induced by H2R activation. Our results indicate that histaminergic transmission in the NAc increases MSN intrinsic excitability through H2R-dependent modulation of Kv4.2 channels. Activation of H2R will significantly alter spike firing in MSNs in vivo, and this effect could be an important mechanism by which these receptors mediate certain aspects of goal-induced behaviours. KEY POINTS: Histamine is synthesized and released by hypothalamic neurons of the tuberomammillary nucleus and serves as a general modulator for whole-brain activity including the nucleus accumbens. Histamine receptors type 2 (HR2), which are expressed in the nucleus accumbens, couple to Gαs/off proteins which elevate cyclic adenosine monophosphate levels and activate protein kinase A. Whole-cell patch-clamp recordings revealed that H2R activation increased the evoked firing in medium spiny neurons of the nucleus accumbens via protein kinase A-dependent mechanisms. HR2 activation accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, diminished action potential medium after-hyperpolarization and increased the action potential half-width. HR2 activation also reduced A-type potassium current. Selective pharmacological inhibition of the Kv4.2 channel mimicked and occluded the increased excitability induced by H2R activation.


Asunto(s)
Histamina , Núcleo Accumbens , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Histamina/farmacología , Neuronas/fisiología , Núcleo Accumbens/fisiología , Receptores Histamínicos H2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA