Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 12(6): 1716-1726, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37192389

RESUMEN

Novel enzymatic methods are poised to become the dominant processes for de novo synthesis of DNA, promising functional, economic, and environmental advantages over the longstanding approach of phosphoramidite synthesis. Before this can occur, however, enzymatic synthesis methods must be parallelized to enable production of multiple DNA sequences simultaneously. As a means to this parallelization, we report a polymerase-nucleotide conjugate that is cleaved using electrochemical oxidation on a microelectrode array. The developed conjugate maintains polymerase activity toward surface-bound substrates with single-base control and detaches from the surface at mild oxidative voltages, leaving an extendable oligonucleotide behind. Our approach readies the way for enzymatic DNA synthesis on the scale necessary for DNA-intensive applications such as DNA data storage or gene synthesis.


Asunto(s)
ADN Nucleotidilexotransferasa , Nucleótidos , ADN Nucleotidilexotransferasa/genética , ADN , Oligonucleótidos , Secuencia de Bases
2.
PLoS Genet ; 15(2): e1007956, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716079

RESUMEN

Mutagenic translesion DNA polymerase V (UmuD'2C) is induced as part of the DNA damage-induced SOS response in Escherichia coli, and is subjected to multiple levels of regulation. The UmuC subunit is sequestered on the cell membrane (spatial regulation) and enters the cytosol after forming a UmuD'2C complex, ~ 45 min post-SOS induction (temporal regulation). However, DNA binding and synthesis cannot occur until pol V interacts with a RecA nucleoprotein filament (RecA*) and ATP to form a mutasome complex, pol V Mut = UmuD'2C-RecA-ATP. The location of RecA relative to UmuC determines whether pol V Mut is catalytically on or off (conformational regulation). Here, we present three interrelated experiments to address the biochemical basis of conformational regulation. We first investigate dynamic deactivation during DNA synthesis and static deactivation in the absence of DNA synthesis. Single-molecule (sm) TIRF-FRET microscopy is then used to explore multiple aspects of pol V Mut dynamics. Binding of ATP/ATPγS triggers a conformational switch that reorients RecA relative to UmuC to activate pol V Mut. This process is required for polymerase-DNA binding and synthesis. Both dynamic and static deactivation processes are governed by temperature and time, in which on → off switching is "rapid" at 37°C (~ 1 to 1.5 h), "slow" at 30°C (~ 3 to 4 h) and does not require ATP hydrolysis. Pol V Mut retains RecA in activated and deactivated states, but binding to primer-template (p/t) DNA occurs only when activated. Studies are performed with two forms of the polymerase, pol V Mut-RecA wt, and the constitutively induced and hypermutagenic pol V Mut-RecA E38K/ΔC17. We discuss conformational regulation of pol V Mut, determined from biochemical analysis in vitro, in relation to the properties of pol V Mut in RecA wild-type and SOS constitutive genetic backgrounds in vivo.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Rec A Recombinasas/metabolismo , Adenosina Trifosfato/metabolismo , Daño del ADN , ADN Bacteriano/biosíntesis , ADN Polimerasa Dirigida por ADN/genética , Activación Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Genes Bacterianos , Cinética , Mutación , Conformación Proteica , Respuesta SOS en Genética
3.
Biochemistry ; 55(16): 2309-18, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27043933

RESUMEN

1953, the year of Watson and Crick, bore witness to a less acclaimed yet highly influential discovery. Jean Weigle demonstrated that upon infection of Escherichia coli, λ phage deactivated by UV radiation, and thus unable to form progeny, could be reactivated by irradiation of the bacterial host. Evelyn Witkin and Miroslav Radman later revealed the presence of the SOS regulon. The more than 40 regulon genes are repressed by LexA protein and induced by the coproteolytic cleavage of LexA, catalyzed by RecA protein bound to single-stranded DNA, the RecA* nucleoprotein filament. Several SOS-induced proteins are engaged in repairing both cellular and extracellular damaged DNA. There's no "free lunch", however, because error-free repair is accompanied by error-prone translesion DNA synthesis (TLS), involving E. coli DNA polymerase V (UmuD'2C) and RecA*. This review describes the biochemical mechanisms of pol V-mediated TLS. pol V is active only as a mutasomal complex, pol V Mut = UmuD'2C-RecA-ATP. RecA* donates a single RecA subunit to pol V. We highlight three recent insights. (1) pol V Mut has an intrinsic DNA-dependent ATPase activity that governs polymerase binding and dissociation from DNA. (2) Active and inactive states of pol V Mut are determined at least in part by the distinct interactions between RecA and UmuC. (3) pol V is activated by RecA*, not at a blocked replisome, but at the inner cell membrane.


Asunto(s)
Bacterias/genética , Replicación del ADN , ADN Bacteriano/genética , ADN Polimerasa Dirigida por ADN/genética , Mutación , Respuesta SOS en Genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Bacterias/metabolismo , ADN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagénesis , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Regulón , Activación Transcripcional
4.
Nat Commun ; 6: 10209, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26681117

RESUMEN

Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ∼ 5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer.


Asunto(s)
Diversidad de Anticuerpos/genética , Linfocitos B/metabolismo , Citidina Desaminasa/metabolismo , ADN de Cadena Simple/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ADN/metabolismo , Proteínas Virales/metabolismo , Animales , Diversidad de Anticuerpos/inmunología , Linfocitos B/inmunología , Citidina Desaminasa/inmunología , Escherichia coli , Transferencia Resonante de Energía de Fluorescencia , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Células Sf9 , Hipermutación Somática de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/inmunología , Spodoptera , Transcripción Genética/genética , Transcripción Genética/inmunología
5.
Elife ; 3: e02384, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24843026

RESUMEN

Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD'2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent ATPase; (2) bound ATP is required for DNA synthesis; (3) pol V Mut function is regulated by ATP, with ATP required to bind primer/template (p/t) DNA and ATP hydrolysis triggering dissociation from the DNA. Pol V Mut formed with an ATPase-deficient RecA E38K/K72R mutant hydrolyzes ATP rapidly, establishing the DNA-dependent ATPase as an intrinsic property of pol V Mut distinct from the ATP hydrolytic activity of RecA when bound to single-stranded (ss)DNA as a nucleoprotein filament (RecA*). No similar ATPase activity or autoregulatory mechanism has previously been found for a DNA polymerase.DOI: http://dx.doi.org/10.7554/eLife.02384.001.


Asunto(s)
Adenosina Trifosfatasas/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Adenosina Trifosfatasas/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Mutación , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo
6.
Cell Mol Life Sci ; 70(17): 3089-108, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23178850

RESUMEN

Activation-induced deoxycytidine deaminase (AID) and Apobec 3G (Apo3G) cause mutational diversity by initiating mutations on regions of single-stranded (ss) DNA. Expressed in B cells, AID deaminates C â†’ U in actively transcribed immunoglobulin (Ig) variable and switch regions to initiate the somatic hypermutation (SHM) and class switch recombination (CSR) that are essential for antibody diversity. Apo3G expressed in T cells catalyzes C deaminations on reverse transcribed cDNA causing HIV-1 retroviral inactivation. When operating properly, AID- and Apo3G-initiated mutations boost human fitness. Yet, both enzymes are potentially powerful somatic cell "mutators". Loss of regulated expression and proper genome targeting can cause human cancer. Here, we review well-established biological roles of AID and Apo3G. We provide a synopsis of AID partnering proteins during SHM and CSR, and describe how an Apo2 crystal structure provides "surrogate" insight for AID and Apo3G biochemical behavior. However, large gaps remain in our understanding of how dC deaminases search ssDNA to identify trinucleotide motifs to deaminate. We discuss two recent methods to analyze ssDNA scanning and deamination. Apo3G scanning and deamination is visualized in real-time using single-molecule FRET, and AID deamination efficiencies are determined with a random walk analysis. AID and Apo3G encounter many candidate deamination sites while scanning ssDNA. Generating mutational diversity is a principal aim of AID and an important ancillary property of Apo3G. Success seems likely to involve hit and miss deamination motif targeting, biased strongly toward miss.


Asunto(s)
Linfocitos B/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Variación Genética , Mutación , Desaminasa APOBEC-3G , Diversidad de Anticuerpos , Desaminación , Sistemas de Liberación de Medicamentos , Humanos , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo
7.
Biochemistry ; 49(1): 20-8, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20000359

RESUMEN

DNA polymerase fidelity is defined as the ratio of right (R) to wrong (W) nucleotide incorporations when dRTP and dWTP substrates compete at equal concentrations for primer extension at the same site in the polymerase-primer-template DNA complex. Typically, R incorporation is favored over W by 10(3)-10(5)-fold, even in the absence of 3'-exonuclease proofreading. Straightforward in principle, a direct competition fidelity measurement is difficult to perform in practice because detection of a small amount of W is masked by a large amount of R. As an alternative, enzyme kinetics measurements to evaluate k(cat)/K(m) for R and W in separate reactions are widely used to measure polymerase fidelity indirectly, based on a steady state derivation by Fersht. A systematic comparison between direct competition and kinetics has not been made until now. By separating R and W products using electrophoresis, we have successfully taken accurate fidelity measurements for directly competing R and W dNTP substrates for 9 of the 12 natural base mispairs. We compare our direct competition results with steady state and pre-steady state kinetic measurements of fidelity at the same template site, using the proofreading-deficient mutant of Klenow fragment (KF(-)) DNA polymerase. All the data are in quantitative agreement.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleótidos/química , Sitios de Unión , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Cartilla de ADN/química , Cartilla de ADN/metabolismo , Desoxirribonucleótidos/metabolismo , Cinética , Mutación , Especificidad por Sustrato , Termodinámica
8.
J Biol Chem ; 279(44): 45360-8, 2004 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-15339923

RESUMEN

Three models describing frameshift mutations are "classical" Streisinger slippage, proposed for repetitive DNA, and "misincorporatation misalignment" and "dNTP-stabilized misalignment," proposed for non-repetitive DNA. We distinguish between models using pre-steady state fluorescence kinetics to visualize transiently misaligned DNA intermediates and nucleotide incorporation products formed by DNA polymerases adept at making small frameshift mutations in vivo. Human polymerase (pol) mu catalyzes Streisinger slippage exclusively in repetitive DNA, requiring as little as a dinucleotide repeat. Escherichia coli pol IV uses dNTP-stabilized misalignment in identical repetitive DNA sequences, revealing that pol mu and pol IV use different mechanisms in repetitive DNA to achieve the same mutational end point. In non-repeat sequences, pol mu switches to dNTP-stabilized misalignment. pol beta generates -1 frameshifts in "long" repeats and base substitutions in "short" repeats. Thus, two polymerases can use two different frameshift mechanisms on identical sequences, whereas one polymerase can alternate between frameshift mechanisms to process different sequences.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Mutación del Sistema de Lectura , Catálisis , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleótidos/metabolismo , Humanos , Conformación Proteica , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos
9.
J Biol Chem ; 279(32): 33047-50, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15210708

RESUMEN

Replication forks often stall at undamaged or damaged template sites in Escherichia coli. Subsequent resumption of DNA synthesis occurs by replacing DNA polymerase III, which is bound to DNA by the beta-sliding clamp, with one of three damage-induced DNA polymerases II, IV, or V. The principal role of the beta clamp is to tether the normally weakly bound polmerases to DNA thereby increasing their processivities. DNA polymerase IV binds dNTP substrates with about 10-fold lower affinity compared with the other E. coli polymerases, which if left unchecked could hinder its ability to synthesize DNA in vivo. Here we report a new property for the beta clamp, which when bound to DNA polymerase IV results in a large increase in dNTP binding affinity that concomitantly increases the efficiency of nucleotide incorporation at normal and transiently slipped mispaired primer/template ends. Primer-template DNA slippage resulting in single nucleotide deletions is a biological hallmark of DNA polymerase IV infidelity responsible for enhancing cell fitness in response to stress. We show that the increased DNA polymerase IV-dNTP binding affinity is an intrinsic property of the DNA polymerase IV-beta clamp interaction and not an indirect consequence of an increased binding of DNA polymerase IV to DNA.


Asunto(s)
ADN Polimerasa III/metabolismo , ADN Polimerasa beta/metabolismo , Desoxirribonucleótidos/metabolismo , Escherichia coli/enzimología , Disparidad de Par Base , Sitios de Unión , ADN/química , ADN/genética , ADN/metabolismo , ADN Polimerasa beta/química , Cartilla de ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Desoxirribonucleótidos/química , Polarización de Fluorescencia , Mutación del Sistema de Lectura , Cinética , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Moldes Genéticos , Nucleótidos de Timina/metabolismo
10.
J Biol Chem ; 278(12): 10033-40, 2003 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-12519754

RESUMEN

The Escherichia coli DNA polymerase III gamma complex clamp loader assembles the ring-shaped beta sliding clamp onto DNA. The core polymerase is tethered to the template by beta, enabling processive replication of the genome. Here we investigate the DNA substrate specificity of the clamp-loading reaction by measuring the pre-steady-state kinetics of DNA binding and ATP hydrolysis using elongation-proficient and deficient primer/template DNA. The ATP-bound clamp loader binds both elongation-proficient and deficient DNA substrates either in the presence or absence of beta. However, elongation-proficient DNA preferentially triggers gamma complex to release beta onto DNA with concomitant hydrolysis of ATP. Binding to elongation-proficient DNA converts the gamma complex from a high affinity ATP-bound state to an ADP-bound state having a 10(5)-fold lower affinity for DNA. Steady-state binding assays are misleading, suggesting that gamma complex binds much more avidly to non-extendable primer/template DNA because recycling to the high affinity binding state is rate-limiting. Pre-steady-state rotational anisotropy data reveal a dynamic association-dissociation of gamma complex with extendable primer/templates leading to the diametrically opposite conclusion. The strongly favored dynamic recognition of extendable DNA does not require the presence of beta. Thus, the gamma complex uses ATP binding and hydrolysis as a mechanism for modulating its interaction with DNA in which the ATP-bound form binds with high affinity to DNA but elongation-proficient DNA substrates preferentially trigger hydrolysis of ATP and conversion to a low affinity state.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Polimerasa III/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Holoenzimas/química , Sitios de Unión , ADN Polimerasa III/química , Cartilla de ADN , Hidrólisis , Cinética , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...