Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 171928, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38531457

RESUMEN

Styrene butadiene rubber is one of the main constituents of tire tread. During tire life, the tread material undergoes different stresses that impact its structure and chemical composition. Wear particles are then released into the environment as weathered material. To understand their fate, it is important to start with a better characterization of abiotic and biotic degradation of the elastomer material. A multi-disciplinary approach was implemented to study the photo- and thermo- degradation of non-vulcanized SBR films containing 15 w% styrene as well as their potential biodegradation by Rhodoccocus ruber and Gordonia polyisoprenivorans bacterial strains. Each ageing process leads to crosslinking reactions, much surface oxidation of the films and the production of hundreds of short chain compounds. These degradation products present a high level of unsaturation and oxidation and can be released into water to become potential substrates for microorganisms. Both strains were able to degrade from 0.2 to 1.2 % (% ThOD) of the aged SBR film after 30-day incubation while no biodegradation was observed on the pristine material. A 25-75 % decrease in the signal intensity of water extractable compounds was observed, suggesting that biomass production was linked to the consumption of low-molecular-weight degradation products. These results evidence the positive impact of abiotic degradation on the biodegradation process of styrene butadiene rubber.


Asunto(s)
Butadienos , Elastómeros , Goma , Estirenos , Estireno , Agua
2.
Sci Total Environ ; 900: 165698, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37499838

RESUMEN

Roadway particles (RP) that can be collected with on-vehicle system, consist of a mixture of Tire and road wear particles (TRWP) with other traffic-derived particles (exhaust or non-exhaust) and/or biogenic compounds and represent a significant source of xenobiotics, susceptible to reach the different environmental compartments. The study of the RP fate is thus a major challenge to tackle in order to understand their degradation and impact. They offer a variety of carbon sources potentially usable by microorganisms, ranging from the tire-derived plasticizers, vulcanizing agents, protective agents and their transformation products, to other traffic, road and environmental-derived contaminants. A multi-analytical approach was implemented to characterize RP and study their biodegradation. Kinetics of RP extractions were monitored during 21 days in water, methanol, acetone and chloroform to identify leaching and extractable compounds and monitor the particle composition. The results confirmed that hundreds of readily leachable chemicals can be extracted from RP directly into water according to a dynamic process with time while additional poorly soluble compounds remain in the particles. Mass spectrometry (LC-HRMS and GC-MS) allowed us to propose 296 putative compounds using an extensive rubber database. The capacity of 6 bacterial strains, belonging to Rhodococcus, Pseudomonas and Streptomyces genera, to biodegrade RP was then evaluated over 14 days of incubation. The selected strains were able to grow on RP using various substrates. Elastomer monitoring by 1H NMR revealed a significant 12 % decrease of the extractable SBR fraction when the particles were incubated with Rhodococcus ruber. After incubation, the biodegradation of 171 compounds among leachable and extractable compounds was evaluated. Fatty acids and alkanes from rubber plasticizers and paraffin waxes were the most degraded putative compounds by the six strains tested, reaching 75 % of biodegradation for some of them.


Asunto(s)
Plastificantes , Goma , Plastificantes/análisis , Emisiones de Vehículos/análisis , Cromatografía de Gases y Espectrometría de Masas , Agua
3.
FEMS Microbiol Ecol ; 99(7)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37309049

RESUMEN

Microbacterium sp. C448, isolated from a soil regularly exposed to sulfamethazine (SMZ), can use various sulphonamide antibiotics as the sole carbon source for growth. The basis for the regulation of genes encoding the sulphonamide metabolism pathway, the dihydropteroate synthase sulphonamide target (folP), and the sulphonamide resistance (sul1) genes is unknown in this organism. In the present study, the response of the transcriptome and proteome of Microbacterium sp. C448 following exposure to subtherapeutic (33 µM) or therapeutic (832 µM) SMZ concentrations was evaluated. Therapeutic concentration induced the highest sad expression and Sad production, consistent with the activity of SMZ degradation observed in cellulo. Following complete SMZ degradation, Sad production tended to return to the basal level observed prior to SMZ exposure. Transcriptomic and proteomic kinetics were concomitant for the resistance genes and proteins. The abundance of Sul1 protein, 100-fold more abundant than FolP protein, did not change in response to SMZ exposure. Moreover, non-targeted analyses highlighted the increase of a deaminase RidA and a putative sulphate exporter expression and production. These two novel factors involved in the 4-aminophenol metabolite degradation and the export of sulphate residues formed during SMZ degradation, respectively, provided new insights into the Microbacterium sp. C448 SMZ detoxification process.


Asunto(s)
Antiinfecciosos , Biodegradación Ambiental , Microbacterium , Sulfametazina , Microbacterium/genética , Microbacterium/metabolismo , Sulfametazina/metabolismo , Microbiología del Suelo , Cinética , Transcriptoma , Proteoma , Sulfonamidas/metabolismo , Farmacorresistencia Bacteriana , Antiinfecciosos/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Dihidropteroato Sintasa/genética , Dihidropteroato Sintasa/metabolismo
4.
Front Microbiol ; 12: 753647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803976

RESUMEN

The sulfonamide antibiotics sulfamethoxazole (SMX) and sulfamethazine (SMZ) are regularly detected in surface sediments of contaminated hydrosystems, with maximum concentrations that can reach tens of µg kg-1 in stream and river sediments. Little is known about the resulting effects on the exposed benthic organisms. Here we investigated the functional response of stream sediment microbial communities exposed for 4 weeks to two levels of environmentally relevant concentrations of SMX and SMZ, tested individually. To this end, we developed a laboratory channel experiment where natural stream sediments were immersed in water contaminated with nominal environmental concentrations of 500 and 5,000 ng L-1 of SMX or SMZ, causing their accumulation in surface sediments. The mean maximum concentrations measured in the sediment (about 2.1 µg SMX kg-1 dw and 4.5 µg SMZ kg-1 dw) were consistent with those reported in contaminated rivers. The resulting chronic exposure had various effects on the functional potential of the sediment microbial communities, according to the substance (SMX or SMZ), the type of treatment (high or low) and the measured activity, with a strong influence of temporal dynamics. Whereas the SMZ treatments resulted in only transient effects on the five microbial activities investigated, we observed a significant stimulation of the ß-glucosidase activity over the 28 days in the communities exposed to the high concentration of SMX. Together with the stimulation of aerobic respiration at low SMX concentrations and the reduced concentration observed in the last days, our results suggest a potential biodegradation of sulfonamides by microbial communities from sediments. Given the key functional role of surface sediment microbial communities in streams and rivers, our findings suggest that the frequently reported contamination of sediments by sulfonamides is likely to affect biogeochemical cycles, with possible impact on ecosystem functioning.

5.
Front Microbiol ; 12: 643719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025605

RESUMEN

Since the early 1920s, the intensive use of antibiotics has led to the contamination of the aquatic environment through diffuse sources and wastewater effluents. The antibiotics commonly found in surface waters include sulfamethoxazole (SMX) and sulfamethazine (SMZ), which belong to the class of sulfonamides, the oldest antibiotic class still in use. These antibiotics have been detected in all European surface waters with median concentrations of around 50 ng L-1 and peak concentrations of up to 4-6 µg L-1. Sulfonamides are known to inhibit bacterial growth by altering microbial production of folic acid, but sub-lethal doses may trigger antimicrobial resistance, with unknown consequences for exposed microbial communities. We investigated the effects of two environmentally relevant concentrations (500 and 5,000 ng L-1) of SMZ and SMX on microbial activity and structure of periphytic biofilms in stream mesocosms for 28 days. Measurement of sulfonamides in the mesocosms revealed contamination levels of about half the nominal concentrations. Exposure to sulfonamides led to slight, transitory effects on heterotrophic functions, but persistent effects were observed on the bacterial structure. After 4 weeks of exposure, sulfonamides also altered the autotrophs in periphyton and particularly the diversity, viability and cell integrity of the diatom community. The higher concentration of SMX tested decreased both diversity (Shannon index) and evenness of the diatom community. Exposure to SMZ reduced diatom species richness and diversity. The mortality of diatoms in biofilms exposed to sulfonamides was twice that in non-exposed biofilms. SMZ also induced an increase in diatom teratologies from 1.1% in non-exposed biofilms up to 3% in biofilms exposed to SMZ. To our knowledge, this is the first report on the teratological effects of sulfonamides on diatoms within periphyton. The increase of both diatom growth rate and mortality suggests a high renewal of diatoms under sulfonamide exposure. In conclusion, our study shows that sulfonamides can alter microbial community structures and diversity at concentrations currently present in the environment, with unknown consequences for the ecosystem. The experimental set-up presented here emphasizes the interest of using natural communities to increase the ecological realism of ecotoxicological studies and to detect potential toxic effects on non-target species.

6.
J Hazard Mater ; 416: 125740, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848793

RESUMEN

One of the major problems with pesticides is linked to the non-negligible proportion of the sprayed active ingredient that does not reach its intended target and contaminates environmental compartments. Here, we have implemented and provided new insights to the preventive bioremediation process based on the simultaneous application of the pesticide with pesticide-degrading microorganisms to reduce the risk of leaching into the environment. This study pioneers such a practice, in an actual farming context. The 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) and one of its bacterial mineralizing-strains (Cupriavidus necator JMP134) were used as models. The 2,4-D biodegradation was studied in soil microcosms planted with sensitive (mustard) and insensitive (wheat) plants. Simultaneous application of a 2,4-D commercial formulation (DAM®) at agricultural recommended doses with 105 cells.g-1 dw of soil of the JMP134 strain considerably accelerated mineralization of the herbicide since its persistence was reduced threefold for soil supplemented with the mineralizing bacterium without reducing the herbicide efficiency. Furthermore, the inoculation of the Cupriavidus necator strain did not significantly affect the α- and ß-diversity of the bacterial community. By tackling the contamination immediately at source, the preventive bioremediation process proves to be an effective and promising way to reduce environmental contamination by agricultural pesticides.


Asunto(s)
Herbicidas , Plaguicidas , Contaminantes del Suelo , Ácido 2,4-Diclorofenoxiacético , Agricultura , Biodegradación Ambiental , Microbiología del Suelo
7.
Front Microbiol ; 12: 643087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841365

RESUMEN

Chronic and repeated exposure of environmental bacterial communities to anthropogenic antibiotics have recently driven some antibiotic-resistant bacteria to acquire catabolic functions, enabling them to use antibiotics as nutritive sources (antibiotrophy). Antibiotrophy might confer a selective advantage facilitating the implantation and dispersion of antibiotrophs in contaminated environments. A microcosm experiment was conducted to test this hypothesis in an agroecosystem context. The sulfonamide-degrading and resistant bacterium Microbacterium sp. C448 was inoculated in four different soil types with and without added sulfamethazine and/or swine manure. After 1 month of incubation, Microbacterium sp. (and its antibiotrophic gene sadA) was detected only in the sulfamethazine-treated soils, suggesting a low competitiveness of the strain without antibiotic selection pressure. In the absence of manure and despite the presence of Microbacterium sp. C448, only one of the four sulfamethazine-treated soils exhibited mineralization capacities, which were low (inferior to 5.5 ± 0.3%). By contrast, manure addition significantly enhanced sulfamethazine mineralization in all the soil types (at least double, comprised between 5.6 ± 0.7% and 19.5 ± 1.2%). These results, which confirm that the presence of functional genes does not necessarily ensure functionality, suggest that sulfamethazine does not necessarily confer a selective advantage on the degrading strain as a nutritional source. 16S rDNA sequencing analyses strongly suggest that sulfamethazine released trophic niches by biocidal action. Accordingly, manure-originating bacteria and/or Microbacterium sp. C448 could gain access to low-competition or competition-free ecological niches. However, simultaneous inputs of manure and of the strain could induce competition detrimental for Microbacterium sp. C448, forcing it to use sulfamethazine as a nutritional source. Altogether, these results suggest that the antibiotrophic strain studied can modulate its sulfamethazine-degrading function depending on microbial competition and resource accessibility, to become established in an agricultural soil. Most importantly, this work highlights an increased dispersal potential of antibiotrophs in antibiotic-polluted environments, as antibiotics can not only release existing trophic niches but also form new ones.

8.
Environ Int ; 146: 106198, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33096465

RESUMEN

Knowledge on interactions among microbial communities colonizing various streambed substrata (e.g. cobbles, sediment, leaf-litter etc.) is essential when investigating the functioning of stream ecosystems. However, these interactions are often forgotten when assessing the responses of aquatic microbial communities to chemical contamination. Using a stream microcosm approach, the respective impact of two sulfonamide antibiotics (sulfamethoxazole and sulfamethazine) on the ability of microbial heterotrophs to decompose alder leaves was investigated in the presence or absence of periphyton. Our hypothesis suggested that sulfonamides would negatively impair microbial litter decomposition and that periphyton could possibly alleviate this effect by stimulating microbial decomposer activity through a priming effect. Results showed that the presence of periphyton enriched water with oxygen and labile dissolved organic carbon forms. However, these labile organic carbon sources did not stimulate leaf-litter decomposition but mostly decoupled microbial decomposer activity from particulate organic matter to dissolved organic matter through negative priming. Also, the two sulfonamide molecules did not affect the leaf-litter decomposition process but significantly decreased bacterial biomass accrual on leaves. The reduction of bacteria was concomitant with an increase in biomass-specific ß-glucosidase activity and this was attributed to a stress response from bacteria to sulfonamides. Further research looking at microbial interactions would provide for better assessment of chemical contamination effects in communities and processes in stream ecosystems.


Asunto(s)
Ecosistema , Microbiota , Antibacterianos/farmacología , Hongos , Hojas de la Planta , Ríos , Sulfonamidas
9.
Environ Sci Pollut Res Int ; 26(18): 18930-18937, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31055743

RESUMEN

Antibiotics have a wide application range in human and veterinary medicines. Being designed for pharmacological stability, most antibiotics are recalcitrant to biodegradation after ingestion and can be persistent in the environment. Antibiotic residues have been detected as contaminants in various environmental compartments where they cause human and environmental threats, notably with respect to the potential emergence and proliferation of antibiotic-resistant bacteria. An important component of managing environmental risk caused by antibiotics is to understand exposure of soil and water resources to their residues. One challenge is to gain knowledge on the fate of antibiotics in the ecosystem along the soil-water continuum, and on the collateral impact of antibiotics on environmental microorganisms responsible for crucially important ecosystem functions. In this context, the ANTIBIOTOX project aims at studying the environmental fate and impact of two antibiotics of the sulfonamide class of antibiotics, sulfamethazine (SMZ), and sulfamethoxazole (SMX).


Asunto(s)
Antibacterianos/análisis , Farmacorresistencia Bacteriana , Microbiota/efectos de los fármacos , Contaminantes del Suelo/análisis , Contaminantes del Agua/análisis , Antibacterianos/toxicidad , Biodegradación Ambiental , Farmacorresistencia Bacteriana/efectos de los fármacos , Ecotoxicología , Humanos , Medición de Riesgo , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Agua/química , Microbiología del Agua , Contaminantes del Agua/toxicidad
10.
J Colloid Interface Sci ; 533: 71-81, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30145442

RESUMEN

The development of new multifunctional materials integrating catalytically active and selective biomolecules, such as enzymes, as well as easily removable and robust inorganic supports that allow their use and reuse, is a subject of ongoing attention. In this work, the nitroreductase NfrA2/YncD (NR) from Bacillus megaterium Mes11 strain was successfully immobilized by adsorption and coprecipitation on layered double hydroxide (LDH) materials with different compositions (MgAl-LDH and ZnAl-LDH), particle sizes and morphologies, and using different enzyme/LDH mass ratios (Q). The materials were characterized and the immobilization and catalytic performance of the biohybrids were studied and optimized. The nitroreductase-immobilized on the nanosized MgAl-LDH displayed the best catalytic performance with 42-46% of catalytic retention and>80% of immobilization yield at saturation values of enzyme loading Cs ≈ 0.6 g NR/g LDH (Q = 0.8). The adsorption process displayed high enzyme-LDH affinity interactions yielding to a stable biohybrid material. The increase in the amount of enzyme loading favoured the catalytic performance of the biohybrid due to the better preservation of the native conformation. The biohybrid was reused several times with partial activity retention after 4 cycles. In addition, the biohybrid was successfully dried maintaining the catalytic activity for several weeks when it was stored in its dry form. Finally, thin films of NR@LDH biohybrid deposited on glassy carbon electrodes were evaluated as a modified electrode applied for nitro-compound detection. The results show that these biohybrids can be used in biotechnology applications to efficiently detect compounds such as dinitrotoluene. The search for new non-hazardous chemical designs preventing or reducing the use of aggressive chemical processes for human being and the environment is the common philosophy within sustainable chemistry.


Asunto(s)
Materiales Biocompatibles/metabolismo , Hidróxidos/metabolismo , Nitrorreductasas/metabolismo , Adsorción , Bacillus megaterium/enzimología , Biocatálisis , Materiales Biocompatibles/química , Carbono/química , Electrodos , Humanos , Hidróxidos/química , Estructura Molecular , Nitrorreductasas/química , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...