Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 105(6): 1212-1220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38514000

RESUMEN

Accurate assessment of the glomerular filtration rate (GFR) is crucial for researching kidney disease in rats. Although validation of methods that assess GFR is crucial, large-scale comparisons between different methods are lacking. Both transcutaneous GFR (tGFR) and a newly developed estimated GFR (eGFR) equation by our group provide a low-invasive approach enabling repeated measurements. The tGFR is a single bolus method using FITC-labeled sinistrin to measure GFR based on half-life of the transcutaneous signal, whilst the eGFR is based on urinary sinistrin clearance. Here, we retrospectively compared tGFR, using both 1- and 3- compartment models (tGFR_1c and tGFR_3c, respectively) to the eGFR in a historic cohort of 43 healthy male rats and 84 male rats with various models of chronic kidney disease. The eGFR was on average considerably lower than tGFR-1c and tGFR-3c (mean differences 855 and 216 µL/min, respectively) and only 20 and 47% of measurements were within 30% of each other, respectively. The relative difference between eGFR and tGFR was highest in rats with the lowest GFR. Possible explanations for the divergence are problems inherent to tGFR, such as technical issues with signal measurement, description of the signal kinetics, and translation of half-life to tGFR, which depends on distribution volume. The unknown impact of isoflurane anesthesia used in determining mGFR remains a limiting factor. Thus, our study shows that there is a severe disagreement between GFR measured by tGFR and eGFR, stressing the need for more rigorous validation of the tGFR and possible adjustments to the underlying technique.


Asunto(s)
Modelos Animales de Enfermedad , Tasa de Filtración Glomerular , Insuficiencia Renal Crónica , Animales , Masculino , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/orina , Insuficiencia Renal Crónica/diagnóstico , Ratas , Riñón/fisiopatología , Ratas Sprague-Dawley , Estudios Retrospectivos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Fluoresceína-5-Isotiocianato/administración & dosificación , Reproducibilidad de los Resultados , Eliminación Renal/fisiología , Fluoresceínas , Oligosacáridos
2.
Adv Healthc Mater ; : e2303888, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451476

RESUMEN

Current vascular access options require frequent interventions. In situ tissue engineering (TE) may overcome these limitations by combining the initial success of synthetic grafts with long-term advantages of autologous vessels by using biodegradable grafts that transform into autologous vascular tissue at the site of implantation. Scaffolds (6 mm-Ø) made of supramolecular polycarbonate-bisurea (PC-BU), with a polycaprolactone (PCL) anti-kinking-coil, are implanted between the carotid artery and jugular vein in goats. A subset is bio-functionalized using bisurea-modified-Stromal cell-derived factor-1α (SDF1α) derived peptides and ePTFE grafts as controls. Grafts are explanted after 1 and 3 months, and evaluated for material degradation, tissue formation, compliance, and patency. At 3 months, the scaffold is resorbed and replaced by vascular neo-tissue, including elastin, contractile markers, and endothelial lining. No dilations, ruptures, or aneurysms are observed and grafts are successfully cannulated at termination. SDF-1α-peptide-biofunctionalization does not influence outcomes. Patency is lower in TE grafts (50%) compared to controls (100% patency), predominantly caused by intimal hyperplasia. Rapid remodeling of a synthetic, biodegradable vascular scaffold into a living, compliant arteriovenous fistula is demonstrated in a large animal model. Despite lower patency compared to ePTFE, transformation into autologous and compliant living tissue with self-healing capacity may have long-term advantages.

3.
APL Bioeng ; 7(2): 026107, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37234843

RESUMEN

Vascular in situ tissue engineering encompasses a single-step approach with a wide adaptive potential and true off-the-shelf availability for vascular grafts. However, a synchronized balance between breakdown of the scaffold material and neo-tissue formation is essential. Chronic kidney disease (CKD) may influence this balance, lowering the usability of these grafts for vascular access in end-stage CKD patients on dialysis. We aimed to investigate the effects of CKD on in vivo scaffold breakdown and tissue formation in grafts made of electrospun, modular, supramolecular polycarbonate with ureido-pyrimidinone moieties (PC-UPy). We implanted PC-UPy aortic interposition grafts (n = 40) in a rat 5/6th nephrectomy model that mimics systemic conditions in human CKD patients. We studied patency, mechanical stability, extracellular matrix (ECM) components, total cellularity, vascular tissue formation, and vascular calcification in CKD and healthy rats at 2, 4, 8, and 12 weeks post-implantation. Our study shows successful in vivo application of a slow-degrading small-diameter vascular graft that supports adequate in situ vascular tissue formation. Despite systemic inflammation associated with CKD, no influence of CKD on patency (Sham: 95% vs CKD: 100%), mechanical stability, ECM formation (Sirius red+, Sham 16.5% vs CKD 25.0%-p:0.83), tissue composition, and immune cell infiltration was found. We did find a limited increase in vascular calcification at 12 weeks (Sham 0.08% vs CKD 0.80%-p:0.02) in grafts implanted in CKD animals. However, this was not associated with increased stiffness in the explants. Our findings suggest that disease-specific graft design may not be necessary for use in CKD patients on dialysis.

4.
Adv Biol (Weinh) ; 7(1): e2200137, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36300913

RESUMEN

3D-scaffold based in vitro human tissue models accelerate disease studies and screening of pharmaceutics while improving the clinical translation of findings. Here is reported the use of human induced pluripotent stem cell (hiPSC)-derived vascular organoid cells as a new cell source for the creation of an electrospun polycaprolactone-bisurea (PCL-BU) 3D-scaffold-based, perfused human macrovessel model. A separation protocol is developed to obtain monocultures of organoid-derived endothelial cells (ODECs) and mural cells (ODMCs) from hiPSC vascular organoids. Shear stress responses of ODECs versus HUVECs and barrier function (by trans endothelial electrical resistance) are measured. PCL-BU scaffolds are seeded with ODECs and ODMCs, and tissue organization and flow adaptation are evaluated in a perfused bioreactor system. ODECs and ODMCs harvested from vascular organoids can be cryopreserved and expanded without loss of cell purity and proliferative capacity. ODECs are shear stress responsive and establish a functional barrier that self-restores after the thrombin challenge. Static bioreactor culture of ODECs/ODMCs seeded scaffolds results in a biomimetic vascular bi-layer hierarchy, which is preserved under laminar flow similar to scaffolds seeded with primary vascular cells. HiPSC-derived vascular organoids can be used as a source of functional, flow-adaptive vascular cells for the creation of 3D-scaffold based human macrovascular models.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Células Endoteliales , Organoides
5.
J Extracell Vesicles ; 11(11): e12280, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36382606

RESUMEN

Mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) show therapeutic potential in multiple disease models, including kidney injury. Clinical translation of sEVs requires further preclinical and regulatory developments, including elucidation of the biodistribution and mode of action (MoA). Biodistribution can be determined using labelled sEVs in animal models which come with ethical concerns, are time-consuming and expensive, and may not well represent human physiology. We hypothesised that, based on developments in microfluidics and human organoid technology, in vitro multi-organ-on-a-chip (MOC) models allow us to study effects of sEVs in modelled human organs like kidney and liver in a semi-systemic manner. Human kidney- and liver organoids combined by microfluidic channels maintained physiological functions, and a kidney injury model was established using hydrogenperoxide. MSC-sEVs were isolated, and their size, density and potential contamination were analysed. These sEVs stimulated recovery of the renal epithelium after injury. Microscopic analysis shows increased accumulation of PKH67-labelled sEVs not only in injured kidney cells, but also in the unharmed liver organoids, compared to healthy control conditions. In conclusion, this new MOC model recapitulates therapeutic efficacy and biodistribution of MSC-sEVs as observed in animal models. Its human background allows for in-depth analysis of the MoA and identification of potential side effects.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Humanos , Organoides , Distribución Tisular , Dispositivos Laboratorio en un Chip , Vesículas Extracelulares/metabolismo , Hígado , Riñón
6.
Artif Organs ; 45(11): 1422-1428, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34251693

RESUMEN

A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO-based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3-deoxyglucosone) were measured in EO- and non-EO-treated fluids. Glyoxal and methylglyoxal concentrations increased 26- and 11-fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209- and 353-fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible.


Asunto(s)
Técnicas Electroquímicas , Glucosa/metabolismo , Riñones Artificiales , Urea/sangre , Soluciones para Diálisis/química , Humanos , Diálisis Renal , Dispositivos Electrónicos Vestibles
7.
Am J Physiol Renal Physiol ; 320(3): F518-F524, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522412

RESUMEN

Monitoring renal function is a vital part of kidney research involving rats. The laborious measurement of glomerular filtration rate (GFR) with administration of exogenous filtration markers does not easily allow serial measurements. Using an in-house database of inulin clearances, we developed and validated a plasma creatinine- and plasma urea-based equation to estimate GFR in a large cohort of male rats [development cohort n = 325, R2 = 0.816, percentage of predictions that fell within 30% of the true value (P30) = 76%] that had high accuracy in the validation cohort (n = 116 rats, R2 = 0.935, P30 = 79%). The equation was less accurate in rats with nonsteady-state creatinine, in which the equation should therefore not be used. In conclusion, applying this equation facilitates easy and repeatable estimates of GFR in rats.NEW & NOTEWORTHY This is the first equation, that we know of, which estimates glomerular filtration rate in rats based on a single measurement of body weight, plasma creatinine, and plasma urea.


Asunto(s)
Adamantano/análogos & derivados , Creatinina/sangre , Dipéptidos/farmacología , Tasa de Filtración Glomerular/efectos de los fármacos , Plasma , Urea , Adamantano/farmacología , Angiotensina II/farmacología , Animales , Riñón/metabolismo , Pruebas de Función Renal , Masculino , Plasma/metabolismo , Ratas , Urea/metabolismo
8.
Sci Rep ; 9(1): 18613, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31819086

RESUMEN

Recent advances in CRISPR/Cas gene editing technology have significantly expanded the possibilities and accelerated the pace of creating genetically engineered animal models. However, CRISPR/Cas-based strategies designed to precisely edit the genome can often yield unintended outcomes. Here, we report the use of zygotic CRISPR/Cas9 injections to generate a knock-in GFP reporter mouse at the Gdf11 locus. Phenotypic and genomic characterization of founder animals from these injections revealed a subset that contained the correct targeting event and exhibited GFP expression that, within the hematopoietic system, was restricted predominantly to lymphoid cells. Yet, in another subset of founder mice, we detected aberrant integration events at the target site that dramatically and inaccurately shifted hematopoietic GFP expression from the lymphoid to the myeloid lineage. Additionally, we recovered multiple Gdf11 deletion alleles that modified the C-terminus of the GDF11 protein. When bred to homozygosity, most of these alleles recapitulated skeletal phenotypes reported previously for Gdf11 knockout mice, suggesting that these represent null alleles. However, we also recovered one Gdf11 deletion allele that encodes a novel GDF11 variant protein ("GDF11-WE") predicted to contain two additional amino acids (tryptophan (W) and glutamic acid (E)) at the C-terminus of the mature ligand. Unlike the other Gdf11 deletion alleles recovered in this study, homozygosity for the Gdf11WE allele did not phenocopy Gdf11 knockout skeletal phenotypes. Further investigation using in vivo and in vitro approaches demonstrated that GDF11-WE retains substantial physiological function, indicating that GDF11 can tolerate at least some modifications of its C-terminus and providing unexpected insights into its biochemical activities. Altogether, our study confirms that one-step zygotic injections of CRISPR/Cas gene editing complexes provide a quick and powerful tool to generate gene-modified mouse models. Moreover, our findings underscore the critical importance of thorough characterization and validation of any modified alleles generated by CRISPR, as unintended on-target effects that fail to be detected by simple PCR screening can produce substantially altered phenotypic readouts.


Asunto(s)
Alelos , Proteínas Morfogenéticas Óseas/genética , Sistemas CRISPR-Cas , Eliminación de Gen , Edición Génica , Factores de Diferenciación de Crecimiento/genética , Animales , Femenino , Genes Reporteros , Ingeniería Genética , Genoma , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/metabolismo , Homocigoto , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Células Mieloides/metabolismo , Fenotipo , Dominios Proteicos , Triptófano/metabolismo
9.
Biol Blood Marrow Transplant ; 22(2): 195-206, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26341398

RESUMEN

Allogeneic (allo) hematopoietic cell transplantation (HCT) has evolved into a potent curative treatment option for a variety of malignant and nonmalignant diseases. The occurrence of complications and mortality after allo-HCT is, however, still high and is strongly associated with immune reconstitution (IR). Therefore, detailed information on IR through immunomonitoring is crucial to improve survival chances after HCT. To date, information about the reconstituting immune system after allo-HCT in pediatric patients is mostly derived from routine standard-of-care measurements. More profound knowledge on IR may provide tools to better predict and modulate adverse reactions and, subsequently, improve survival chances. Here, we provide an overview of IR (eg, immune cell subsets and circulating chemokines/cytokines) after allo-HCT in children, taking into account different cell sources and serotherapy, and discuss strategies to enhance immunomonitoring. We conclude that available IR data after allo-HCT contain limited information on immune cell families (mostly only generic T, B, and NK cells), which would improve with more detailed information on reconstituting cell subsets or effector cell functionality at earlier time points (<1 month). In addition, secretome data (eg, multiplex cytokine/chemokine profiles) could add to the understanding of IR mechanisms and cell functionality and may even provide (early) biomarkers for individual disease outcome, such as viral reactivity, graft-versus-host disease, or graft-versus-leukemia. The present data and suggestions for more detailed, standardized, and harmonized immunomonitoring in future (pediatric) allo-HCT studies will pave the path to "precision transplantation:" an individualized HCT approach (including conditioning), based on detailed information on IR and biomarkers, aiming to reduce transplantation related mortality and relapse, and subsequently improve survival chances.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/métodos , Inmunización Pasiva/métodos , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo/métodos , Biomarcadores , Niño , Preescolar , Humanos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...