Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 577(7790): 381-385, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853068

RESUMEN

Homo erectus is the founding early hominin species of Island Southeast Asia, and reached Java (Indonesia) more than 1.5 million years ago1,2. Twelve H. erectus calvaria (skull caps) and two tibiae (lower leg bones) were discovered from a bone bed located about 20 m above the Solo River at Ngandong (Central Java) between 1931 and 19333,4, and are of the youngest, most-advanced form of H. erectus5-8. Despite the importance of the Ngandong fossils, the relationship between the fossils, terrace fill and ages have been heavily debated9-14. Here, to resolve the age of the Ngandong evidence, we use Bayesian modelling of 52 radiometric age estimates to establish-to our knowledge-the first robust chronology at regional, valley and local scales. We used uranium-series dating of speleothems to constrain regional landscape evolution; luminescence, 40argon/39argon (40Ar/39Ar) and uranium-series dating to constrain the sequence of terrace evolution; and applied uranium-series and uranium series-electron-spin resonance (US-ESR) dating to non-human fossils to directly date our re-excavation of Ngandong5,15. We show that at least by 500 thousand years ago (ka) the Solo River was diverted into the Kendeng Hills, and that it formed the Solo terrace sequence between 316 and 31 ka and the Ngandong terrace between about 140 and 92 ka. Non-human fossils recovered during the re-excavation of Ngandong date to between 109 and 106 ka (uranium-series minimum)16 and 134 and 118 ka (US-ESR), with modelled ages of 117 to 108 thousand years (kyr) for the H. erectus bone bed, which accumulated during flood conditions3,17. These results negate the extreme ages that have been proposed for the site and solidify Ngandong as the last known occurrence of this long-lived species.


Asunto(s)
Hominidae , Animales , Evolución Biológica , Fósiles , Indonesia , Huesos de la Pierna , Cráneo , Factores de Tiempo
2.
Environ Sci Process Impacts ; 18(4): 456-63, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26952871

RESUMEN

Naturally-occurring radioactive materials (NORM) associated with unconventional drilling produced fluids from the Marcellus Shale have raised environmental concerns. However, few investigations into the fundamental chemistry of NORM in Marcellus Shale produced fluids have been performed. Thus, we performed radiochemical experiments with Marcellus Shale produced fluids to understand the partitioning behavior of major radioelements of environmental health concern (uranium (U), thorium (Th), radium (Ra), lead (Pb), and polonium (Po)). We applied a novel radiotracer, (203)Pb, to understand the behavior of trace-levels of (210)Pb in these fluids. Ultrafiltration experiments indicated U, Th, and Po are particle reactive in Marcellus Shale produced fluids and Ra and Pb are soluble. Sediment partitioning experiments revealed that >99% of Ra does not adsorb to sediments in the presence of Marcellus Shale produced fluids. Further experiments indicated that although Ra adsorption is related to ionic strength, the concentrations of heavier alkaline earth metals (Ba, Sr) are stronger predictors of Ra solubility.


Asunto(s)
Fracking Hidráulico , Polonio/análisis , Radioisótopos/análisis , Radio (Elemento)/análisis , Torio/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis , Monitoreo del Ambiente , Residuos Industriales/análisis , Aguas Residuales/química , West Virginia
3.
Environ Manage ; 52(6): 1440-52, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23979524

RESUMEN

In this paper, we argue that there is tremendous potential for nitrate-N reductions to occur throughout the Corn Belt region of the USA if we simply let naturally occurring wet spots on the landscape be wet. Geologic and hydrologic data gathered in the Walnut Creek watershed located in south-central Iowa provides compelling evidence that substantial nutrient-processing capacity exists in this dissected glacial landscape. Self-similarity of stratigraphy, sedimentology and hydrology observed at all spatial scales in the watershed suggests that Holocene alluvial fill deposits provide a natural bioreactor for denitrification of upland groundwater nitrate-N; the occurrence of such deposits can be mapped to identify potential nitrogen sinks across the landscape. This approach to identifying potential nitrogen sinks is geology focused and extends potential locations for nutrient processing upstream into the headwater catchments of individual fields.


Asunto(s)
Agricultura/métodos , Reactores Biológicos/microbiología , Sedimentos Geológicos/microbiología , Ríos , Humedales , Carbono/análisis , Sedimentos Geológicos/química , Agua Subterránea/análisis , Cubierta de Hielo , Iowa , Nitratos/metabolismo , Nitrógeno/análisis , Movimientos del Agua , Calidad del Agua
4.
J Hum Evol ; 61(4): 363-76, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21783226

RESUMEN

Sangiran (Solo Basin, Central Java, Indonesia) is the singular Homo erectus fossil locale for Early Pleistocene Southeast Asia. Sangiran is the source for more than 80 specimens in deposits with (40)Ar/(39)Ar ages of 1.51-0.9 Ma. In April 2001, we recovered a H. erectus left maxilla fragment (preserving P(3)- M(2)) from the Sangiran site of Bapang. The find spot lies at the base of the Bapang Formation type section in cemented gravelly sands traditionally called the Grenzbank Zone. Two meters above the find spot, pumice hornblende has produced an (40)Ar/(39)Ar age of 1.51 ± 0.08 Ma. With the addition of Bpg 2001.04, Sangiran now has five H. erectus maxillae. We compare the new maxilla with homologs representing Sangiran H. erectus, Zhoukoudian H. erectus, Western H. erectus (pooled African and Georgian specimens), and Homo habilis. Greatest contrast is with the Zhoukoudian maxillae, which appear to exhibit a derived pattern of premolar-molar relationships compared to Western and Sangiran H. erectus. The dental patterns suggest distinct demic origins for the earlier H. erectus populations represented at Sangiran and the later population represented at Zhoukoudian. These two east Asian populations, separated by 5000 km and nearly 800 k.yr., may have had separate origins from different African/west Eurasian populations.


Asunto(s)
Fósiles , Hominidae/anatomía & histología , Maxilar/anatomía & histología , Diente/anatomía & histología , Análisis de Varianza , Animales , Evolución Biológica , Clima , Análisis por Conglomerados , Indonesia , Paleodontología
6.
J Hum Evol ; 56(1): 11-24, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19007966

RESUMEN

A sequence of paleosols in the Solo Basin, Central Java, Indonesia, documents the local and regional environments present when Homo erectus spread through Southeast Asia during the early Pleistocene. The earliest human immigrants encountered a low-relief lake-margin landscape dominated by moist grasslands with open woodlands in the driest landscape positions. By 1.5 Ma, large streams filled the lake and the landscape became more riverine in nature, with riparian forests, savanna, and open woodland. Paleosol morphology and carbon isotope values of soil organic matter and pedogenic carbonates indicate a long-term shift toward regional drying or increased duration of the annual dry season through the early Pleistocene. This suggests that an annual dry season associated with monsoon conditions was an important aspect of the paleoclimate in which early humans spread from Africa to Southeast Asia.


Asunto(s)
Ecosistema , Hominidae/genética , Paleontología , África , Animales , Isótopos de Carbono , Sedimentos Geológicos , Humanos , Indonesia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...