Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(25): eadf6222, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37343100

RESUMEN

Synaptic vesicle tethering, priming, and neurotransmitter release require a coordinated action of multiple protein complexes. While physiological experiments, interaction data, and structural studies of purified systems were essential for our understanding of the function of the individual complexes involved, they cannot resolve how the actions of individual complexes integrate. We used cryo-electron tomography to simultaneously image multiple presynaptic protein complexes and lipids at molecular resolution in their native composition, conformation, and environment. Our detailed morphological characterization suggests that sequential synaptic vesicle states precede neurotransmitter release, where Munc13-comprising bridges localize vesicles <10 nanometers and soluble N-ethylmaleimide-sensitive factor attachment protein 25-comprising bridges <5 nanometers from the plasma membrane, the latter constituting a molecularly primed state. Munc13 activation supports the transition to the primed state via vesicle bridges to plasma membrane (tethers), while protein kinase C promotes the same transition by reducing vesicle interlinking. These findings exemplify a cellular function performed by an extended assembly comprising multiple molecularly diverse complexes.


Asunto(s)
Transmisión Sináptica , Vesículas Sinápticas , Vesículas Sinápticas/metabolismo , Transmisión Sináptica/fisiología , Fusión de Membrana , Membrana Celular/metabolismo , Neurotransmisores/metabolismo
2.
Cell Rep ; 39(3): 110696, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443170

RESUMEN

Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.


Asunto(s)
Transmisión Sináptica , Vesículas Sinápticas , Animales , Proteínas de Unión al GTP/metabolismo , Homeostasis/fisiología , Mamíferos/metabolismo , Plasticidad Neuronal/fisiología , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo
3.
Phytochemistry ; 128: 71-81, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27137461

RESUMEN

Five michellamine-type dimeric naphthylisoquinoline alkaloids (NIQs), named michellamines A2, A3, A4, B2, and B3, have been isolated from the root bark of the Central African liana Ancistrocladus congolensisJ. Léonard (Ancistrocladaceae), along with their two known parent compounds, the michellamines A and B, which had so far only been detected in the Cameroonian species Ancistrocladus korupensis. Five monomeric representatives, viz., korupensamine D, ancistrobrevine B, hamatine, 5'-O-demethylhamatine, and 6-O-methylhamatine, already known from related Ancistrocladus species, have likewise been identified. The structure elucidation was achieved by spectroscopic analysis including HRESIMS, 1D and 2D NMR, and by chemical and chiroptical methods. The michellamines A2, A3, B3, and A4 were evaluated for their cytotoxic and anti-HIV activities at a concentration range of 0-100 µM against the HIV reference strain IIIB/LAI in A3.01 T lymphoblast cell cultures, and their effects were compared to the ones displayed by the known michellamines A and B. Inhibitory activities for HIV replication were monitored for the michellamines A2 (IC50 = 29.6 µM), A3 (IC50 = 15.2 µM), A4 (IC50 = 35.9 µM), and B (IC50 = 20.4 µM). The michellamines A and B3, by contrast, did not inhibit HIV replication. No cytotoxicity was observed. Furthermore, the chemotaxonomic significance of the previously undescribed michellamines is discussed.


Asunto(s)
Fármacos Anti-VIH/aislamiento & purificación , Fármacos Anti-VIH/farmacología , Isoquinolinas/aislamiento & purificación , Isoquinolinas/farmacología , Magnoliopsida/química , Naftalenos/aislamiento & purificación , Naftalenos/farmacología , África Central , Fármacos Anti-VIH/química , Humanos , Concentración 50 Inhibidora , Isoquinolinas/química , Estructura Molecular , Naftalenos/química , Resonancia Magnética Nuclear Biomolecular , Corteza de la Planta/química , Linfocitos T/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA