Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(3): e202316488, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38009610

RESUMEN

Inorganic materials depleted of heavy stable isotopes are known to deviate strongly in some physicochemical properties from their isotopically natural counterparts. Here we explored for the first time the effect of simultaneous depletion of the heavy carbon, hydrogen, oxygen and nitrogen isotopes on the bacterium E. coli and the enzymes expressed in it. Bacteria showed faster growth, with most proteins exhibiting higher thermal stability, while for recombinant enzymes expressed in depleted media, faster kinetics was discovered. At room temperature, luciferase, thioredoxin and dihydrofolate reductase and Pfu DNA polymerase showed up to a 250 % increase in activity compared to the native counterparts, with an additional ∼50 % increase at 10 °C. Diminished conformational and vibrational entropy is hypothesized to be the cause of the accelerated kinetics. Ultralight enzymes may find an application where extreme reaction rates are required.


Asunto(s)
Escherichia coli , Hidrógeno , Escherichia coli/metabolismo , Hidrógeno/metabolismo , Bacterias , Tetrahidrofolato Deshidrogenasa/genética , Cinética
2.
Nat Commun ; 14(1): 6243, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813859

RESUMEN

G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events. Using recently developed biosensors, we explored the ability of GLP-1R to activate 15 pathways in 4 cellular compartments and demonstrate that modifications aimed at improving the therapeutic potential of GLP-1R agonists greatly influence compound efficacy, potency, and safety in a pathway- and compartment-selective manner. These findings, together with comparative structure analysis, time-lapse microscopy, and phosphoproteomics, reveal unique signaling signatures for GLP-1R agonists at the level of receptor conformation, functional selectivity, and location bias, thus associating signaling neighborhoods with functionally distinct cellular outcomes and clinical consequences.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Receptor del Péptido 1 Similar al Glucagón , Incretinas , Humanos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Incretinas/efectos adversos , Transducción de Señal
3.
Hepatology ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870288

RESUMEN

BACKGROUND AND AIMS: The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/ß-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS: Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS: Our results showed that, unlike in rodents, activation of Wnt/ß-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFß inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/ß-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/ß-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS: This study revealed a network of NFκB, TGFß, and Wnt/ß-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.

4.
Cell Mol Life Sci ; 80(9): 268, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632572

RESUMEN

Aortic valve degeneration (AVD) is a life-threatening condition that has no medical treatment and lacks individual therapies. Although extensively studied with standard approaches, aetiologies behind AVD are unclear. We compared abundances of extracellular matrix (ECM) proteins from excised valve tissues of 88 patients with isolated AVD of normal tricuspid (TAV) and congenital bicuspid aortic valves (BAV), quantified more than 1400 proteins per ECM sample by mass spectrometry, and demonstrated that local ECM preserves molecular cues of the pathophysiological processes. The BAV ECM showed enrichment with fibrosis markers, namely Tenascin C, Osteoprotegerin, and Thrombospondin-2. The abnormal physical stress on BAV may cause a mechanical injury leading to a continuous Tenascin C-driven presence of myofibroblasts and persistent fibrosis. The TAV ECM exhibited enrichment with Annexin A3 (p = 1.1 × 10-16 and the fold change 6.5) and a significant deficit in proteins involved in high-density lipid metabolism. These results were validated by orthogonal methods. The difference in the ECM landscape suggests distinct aetiologies between AVD of BAV and TAV; warrants different treatments of the patients with BAV and TAV; elucidates the molecular basis of AVD; and implies possible new therapeutic approaches. Our publicly available database (human_avd_ecm.surgsci.uu.se) is a rich source for medical doctors and researchers who are interested in AVD or heart ECM in general. Systematic proteomic analysis of local ECM using the methods described here may facilitate future studies of various tissues and organs in development and disease.


Asunto(s)
Válvula Aórtica , Tenascina , Humanos , Proteómica , Matriz Extracelular , Aorta
5.
Proc Natl Acad Sci U S A ; 120(25): e2218668120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307481

RESUMEN

A longstanding goal has been to find an antigen-specific preventive therapy, i.e., a vaccine, for autoimmune diseases. It has been difficult to find safe ways to steer the targeting of natural regulatory antigen. Here, we show that the administration of exogenous mouse major histocompatibility complex class II protein bounding a unique galactosylated collagen type II (COL2) peptide (Aq-galCOL2) directly interacts with the antigen-specific TCR through a positively charged tag. This leads to expanding a VISTA-positive nonconventional regulatory T cells, resulting in a potent dominant suppressive effect and protection against arthritis in mice. The therapeutic effect is dominant and tissue specific as the suppression can be transferred with regulatory T cells, which downregulate various autoimmune arthritis models including antibody-induced arthritis. Thus, the tolerogenic approach described here may be a promising dominant antigen-specific therapy for rheumatoid arthritis, and in principle, for autoimmune diseases in general.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Animales , Ratones , Vacunas de Subunidad , Linfocitos T Reguladores , Anticuerpos
6.
Nat Commun ; 14(1): 691, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36754962

RESUMEN

Although elevated levels of anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA), the in vivo functions of these antibodies remain unclear. Here, we have expressed monoclonal ACPAs derived from patients with RA, and analyzed their functions in mice, as well as their specificities. None of the ACPAs showed arthritogenicity nor induced pain-associated behavior in mice. However, one of the antibodies, clone E4, protected mice from antibody-induced arthritis. E4 showed a binding pattern restricted to skin, macrophages and dendritic cells in lymphoid tissue, and cartilage derived from mouse and human arthritic joints. Proteomic analysis confirmed that E4 strongly binds to macrophages and certain RA synovial fluid proteins such as α-enolase. The protective effect of E4 was epitope-specific and dependent on the interaction between E4-citrullinated α-enolase immune complexes with FCGR2B on macrophages, resulting in increased IL-10 secretion and reduced osteoclastogenesis. These findings suggest that a subset of ACPAs have therapeutic potential in RA.


Asunto(s)
Artritis Reumatoide , Autoanticuerpos , Humanos , Animales , Ratones , Proteómica , Fosfopiruvato Hidratasa
7.
Anal Chem ; 94(45): 15772-15780, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377428

RESUMEN

Most drugs are used in the clinic and drug candidate target multiple proteins, and thus detailed characterization of their efficacy targets is required. While current methods rely on quantitative measurements at thermodynamic equilibrium, kinetic parameters such as the residence time of a drug on its target provide a better proxy for efficacy in vivo. Here, we present a residence time proteome integral solubility alteration (ResT-PISA) assay, which facilitates monitoring temporal protein solubility profiles after drug removal ("off-curve") in cell lysates or intact cells, quantifying the lifetime of drug-target interaction. A compressed version of the assay measures the integral under the off-curve enabling the multiplexing of binding affinity and residence time assessments into a single proteomic analysis. We introduce a combined scoring system for three parametric dimensions to improve prioritization of targets. By providing complementary information to other characteristics of drug-target interaction, the ResT-PISA approach will be useful in drug development and precision medicine.


Asunto(s)
Proteoma , Proteómica , Proteoma/química , Proteómica/métodos , Solubilidad , Termodinámica , Cinética
8.
Anal Chem ; 94(19): 7066-7074, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35506705

RESUMEN

Unbiased drug target engagement deconvolution and mechanism of action elucidation are major challenges in drug development. Modification-free target engagement methods, such as thermal proteome profiling, have gained increasing popularity in the last several years. However, these methods have limitations, and, in any case, new orthogonal approaches are needed. Here, we present a novel isothermal method for comprehensive characterization of protein solubility alterations using the effect on protein solubility of cations and anions in the Hofmeister series. We combine the ion-based protein precipitation approach with Proteome-Integrated Solubility Alteration (PISA) analysis and use this I-PISA assay to delineate the targets of several anticancer drugs both in cell lysates and intact cells. Finally, we demonstrate that I-PISA can detect solubility changes in minute amounts of sample, opening chemical proteomics applications to small and rare biological material.


Asunto(s)
Proteoma , Proteómica , Bioensayo , Desarrollo de Medicamentos , Proteoma/metabolismo , Proteómica/métodos , Solubilidad
9.
Redox Biol ; 48: 102184, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34788728

RESUMEN

Anticancer drugs that target cellular antioxidant systems have recently attracted much attention. Auranofin (AF) is currently evaluated in several clinical trials as an anticancer agent that targets the cytosolic and mitochondrial forms of the selenoprotein thioredoxin reductase, TXNRD1 and TXNRD2. Recently, two novel TXNRD1 inhibitors (TRi-1 and TRi-2) have been developed that showed anticancer efficacy comparable to AF, but with lower mitochondrial toxicity. However, the cellular action mechanisms of these drugs have not yet been thoroughly studied. Here we used several proteomics approaches to determine the effects of AF, TRi-1 and TRi-2 when used at IC50 concentrations with the mouse B16 melanoma and LLC lung adenocarcinoma cells, as these are often used for preclinical mouse models in evaluation of anticancer drugs. The results demonstrate that TRi-1 and TRi-2 are more specific TXNRD1 inhibitors than AF and reveal additional AF-specific effects on the cellular proteome. Interestingly, AF triggered stronger Nrf2-driven antioxidant responses than the other two compounds. Furthermore, AF affected several additional proteins, including GSK3A, GSK3B, MCMBP and EEFSEC, implicating additional effects on glycogen metabolism, cellular differentiation, inflammatory pathways, DNA replication and selenoprotein synthesis processes. Our proteomics data provide a resource for researchers interested in the multidimensional analysis of proteome changes associated with oxidative stress in general, and the effects of TXNRD1 inhibitors and AF protein targets in particular.

10.
Nat Commun ; 12(1): 6558, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772928

RESUMEN

Detailed characterization of cell type transitions is essential for cell biology in general and particularly for the development of stem cell-based therapies in regenerative medicine. To systematically study such transitions, we introduce a method that simultaneously measures protein expression and thermal stability changes in cells and provide the web-based visualization tool ProteoTracker. We apply our method to study differences between human pluripotent stem cells and several cell types including their parental cell line and differentiated progeny. We detect alterations of protein properties in numerous cellular pathways and components including ribosome biogenesis and demonstrate that modulation of ribosome maturation through SBDS protein can be helpful for manipulating cell stemness in vitro. Using our integrative proteomics approach and the web-based tool, we uncover a molecular basis for the uncoupling of robust transcription from parsimonious translation in stem cells and propose a method for maintaining pluripotency in vitro.


Asunto(s)
Proteómica/métodos , Diferenciación Celular/fisiología , Línea Celular , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
11.
Nat Commun ; 12(1): 1296, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637753

RESUMEN

Despite the immense importance of enzyme-substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability. In our proof-of-concept studies, SIESTA successfully identifies several known and novel substrate candidates for selenoprotein thioredoxin reductase 1, protein kinase B (AKT1) and poly-(ADP-ribose) polymerase-10 systems. Wider application of SIESTA can enhance our understanding of the role of enzymes in homeostasis and disease, opening opportunities to investigate the effect of post-translational modifications on signal transduction and facilitate drug discovery.


Asunto(s)
Enzimas/química , Enzimas/metabolismo , Procesamiento Proteico-Postraduccional , Carcinoma , Descubrimiento de Drogas , Enzimas/genética , Células HCT116 , Humanos , Espectrometría de Masas , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especificidad por Sustrato , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/genética
12.
Redox Biol ; 32: 101491, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32199331

RESUMEN

Chemical proteomics encompasses novel drug target deconvolution methods in which compound modification is not required. Herein we use Thermal Proteome Profiling, Functional Identification of Target by Expression Proteomics and multiplexed redox proteomics for deconvolution of auranofin targets to aid elucidation of its mechanisms of action. Auranofin (Ridaura®) was approved for treatment of rheumatoid arthritis in 1985. Because several clinical trials are currently ongoing to repurpose auranofin for cancer therapy, comprehensive characterization of its targets and effects in cancer cells is important. Together, our chemical proteomics tools confirmed thioredoxin reductase 1 (TXNRD1, EC:1.8.1.9) as a main auranofin target, with perturbation of oxidoreductase pathways as the top mechanism of drug action. Additional indirect targets included NFKB2 and CHORDC1. Our comprehensive data can be used as a proteomic signature resource for further analyses of the effects of auranofin. Here we also assessed the orthogonality and complementarity of different chemical proteomics methods that can furnish invaluable mechanistic information and thus the approach can facilitate drug discovery efforts in general.


Asunto(s)
Auranofina , Preparaciones Farmacéuticas , Auranofina/farmacología , Oxidación-Reducción , Proteómica , Tiorredoxina Reductasa 1/metabolismo
13.
J Proteome Res ; 18(11): 4027-4037, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31545609

RESUMEN

Various agents, including drugs as well as nonmolecular stimuli, induce alterations in the physicochemical properties of proteins in cell lysates, living cells, and organisms. These alterations can be probed by applying a stability- and solubility-modifying factor, such as elevated temperature, to a varying degree. As a second dimension of variation, drug concentration or agent intensity/concentration can be used. Compared to standard approaches where curves are fitted to protein solubility data acquired at different temperatures and drug concentrations, Proteome Integral Solubility Alteration (PISA) assay increases the analysis throughput by 1 to 2 orders of magnitude for an unlimited number of factor variation points in such a scheme. The consumption of the compound and biological material decreases in PISA by the same factor. We envision widespread use of the PISA approach in chemical biology and drug development.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Proteoma/metabolismo , Proteómica/métodos , Temperatura , Células A549 , Algoritmos , Antimetabolitos/farmacología , Línea Celular Tumoral , Cromatografía Liquida/métodos , Fluorouracilo/farmacología , Humanos , Metotrexato/farmacología , Inhibidores de Proteasas/farmacología , Estabilidad Proteica/efectos de los fármacos , Proteoma/química , Proteoma/efectos de los fármacos , Reproducibilidad de los Resultados , Solubilidad , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...