Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Genes Immun ; 14(4): 223-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23552399

RESUMEN

To identify rate-limiting steps in T cell-independent type 2 antibody production against polysaccharide antigens, we performed a genome-wide screen by immunizing several hundred pedigrees of C57BL/6 mice segregating N-ethyl-N-nitrosurea-induced mis-sense mutations. Two independent mutations, Tilcara and Untied, were isolated that semi-dominantly diminished antibody against polysaccharide but not protein antigens. Both mutations resulted from single-amino-acid substitutions within the kinase domain of protein kinase C-ß (PKCß). In Tilcara, a Ser552>Pro mutation occurred in helix G, in close proximity to a docking site for the inhibitory N-terminal pseudosubstrate domain of the enzyme, resulting in almost complete loss of active, autophosphorylated PKCßI, whereas the amount of alternatively spliced PKCßII protein was not markedly reduced. Circulating B cell subsets were normal and acute responses to B-cell receptor stimulation such as CD25 induction and initiation of DNA synthesis were only measurably diminished in Tilcara homozygotes, whereas the fraction of cells that had divided multiple times was decreased to an intermediate degree in heterozygotes. These results, coupled with evidence of numerous mis-sense PRKCB mutations in the human genome, identify Prkcb as a genetically sensitive step likely to contribute substantially to population variability in anti-polysaccharide antibody levels.


Asunto(s)
Heterocigoto , Inmunoglobulinas/biosíntesis , Mutación Missense , Proteína Quinasa C beta/genética , Animales , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Sitios de Unión , Genoma , Inmunoglobulinas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Linaje , Proteína Quinasa C beta/química
2.
Open Biol ; 2(5): 120061, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22724066

RESUMEN

Accurate identification of sparse heterozygous single-nucleotide variants (SNVs) is a critical challenge for identifying the causative mutations in mouse genetic screens, human genetic diseases and cancer. When seeking to identify causal DNA variants that occur at such low rates, they are overwhelmed by false-positive calls that arise from a range of technical and biological sources. We describe a strategy using whole-exome capture, massively parallel DNA sequencing and computational analysis, which identifies with a low false-positive rate the majority of heterozygous and homozygous SNVs arising de novo with a frequency of one nucleotide substitution per megabase in progeny of N-ethyl-N-nitrosourea (ENU)-mutated C57BL/6j mice. We found that by applying a strategy of filtering raw SNV calls against known and platform-specific variants we could call true SNVs with a false-positive rate of 19.4 per cent and an estimated false-negative rate of 21.3 per cent. These error rates are small enough to enable calling a causative mutation from both homozygous and heterozygous candidate mutation lists with little or no further experimental validation. The efficacy of this approach is demonstrated by identifying the causative mutation in the Ptprc gene in a lymphocyte-deficient strain and in 11 other strains with immune disorders or obesity, without the need for meiotic mapping. Exome sequencing of first-generation mutant mice revealed hundreds of unphenotyped protein-changing mutations, 52 per cent of which are predicted to be deleterious, which now become available for breeding and experimental analysis. We show that exome sequencing data alone are sufficient to identify induced mutations. This approach transforms genetic screens in mice, establishes a general strategy for analysing rare DNA variants and opens up a large new source for experimental models of human disease.


Asunto(s)
Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Exoma , Ratones Endogámicos C57BL/genética , Ratones Mutantes/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Animales , Cruzamientos Genéticos , Etilnitrosourea , Femenino , Genes Recesivos , Heterocigoto , Homocigoto , Endogamia , Antígenos Comunes de Leucocito/genética , Masculino , Ratones , Mutagénesis
3.
Braz. j. med. biol. res ; 42(6): 523-530, June 2009. ilus, tab
Artículo en Inglés | LILACS | ID: lil-512760

RESUMEN

Protein energy malnutrition (PEM) is a syndrome that often results in immunodeficiency coupled with pancytopenia. Hemopoietic tissue requires a high nutrient supply and the proliferation, differentiation and maturation of cells occur in a constant and balanced manner, sensitive to the demands of specific cell lineages and dependent on the stem cell population. In the present study, we evaluated the effect of PEM on some aspects of hemopoiesis, analyzing the cell cycle of bone marrow cells and the percentage of progenitor cells in the bone marrow. Two-month-old male Swiss mice (N = 7-9 per group) were submitted to PEM with a low-protein diet (4 percent) or were fed a control diet (20 percent protein) ad libitum. When the experimental group had lost about 20 percent of their original body weight after 14 days, we collected blood and bone marrow cells to determine the percentage of progenitor cells and the number of cells in each phase of the cell cycle. Animals of both groups were stimulated with 5-fluorouracil. Blood analysis, bone marrow cell composition and cell cycle evaluation was performed after 10 days. Malnourished animals presented anemia, reticulocytopenia and leukopenia. Their bone marrow was hypocellular and depleted of progenitor cells. Malnourished animals also presented more cells than normal in phases G0 and G1 of the cell cycle. Thus, we conclude that PEM leads to the depletion of progenitor hemopoietic populations and changes in cellular development. We suggest that these changes are some of the primary causes of pancytopenia in cases of PEM.


Asunto(s)
Animales , Masculino , Ratones , Células de la Médula Ósea/fisiología , Proliferación Celular , Fase de Descanso del Ciclo Celular/fisiología , Fase G1/fisiología , Células Madre Hematopoyéticas/fisiología , Desnutrición Proteico-Calórica/fisiopatología , Ensayo de Unidades Formadoras de Colonias , Ciclo Celular/fisiología , Citometría de Flujo , Fluorouracilo , Desnutrición Proteico-Calórica/sangre
4.
Braz J Med Biol Res ; 42(6): 523-30, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19448901

RESUMEN

Protein energy malnutrition (PEM) is a syndrome that often results in immunodeficiency coupled with pancytopenia. Hemopoietic tissue requires a high nutrient supply and the proliferation, differentiation and maturation of cells occur in a constant and balanced manner, sensitive to the demands of specific cell lineages and dependent on the stem cell population. In the present study, we evaluated the effect of PEM on some aspects of hemopoiesis, analyzing the cell cycle of bone marrow cells and the percentage of progenitor cells in the bone marrow. Two-month-old male Swiss mice (N = 7-9 per group) were submitted to PEM with a low-protein diet (4%) or were fed a control diet (20% protein) ad libitum. When the experimental group had lost about 20% of their original body weight after 14 days, we collected blood and bone marrow cells to determine the percentage of progenitor cells and the number of cells in each phase of the cell cycle. Animals of both groups were stimulated with 5-fluorouracil. Blood analysis, bone marrow cell composition and cell cycle evaluation was performed after 10 days. Malnourished animals presented anemia, reticulocytopenia and leukopenia. Their bone marrow was hypocellular and depleted of progenitor cells. Malnourished animals also presented more cells than normal in phases G0 and G1 of the cell cycle. Thus, we conclude that PEM leads to the depletion of progenitor hemopoietic populations and changes in cellular development. We suggest that these changes are some of the primary causes of pancytopenia in cases of PEM.


Asunto(s)
Células de la Médula Ósea/fisiología , Proliferación Celular , Fase G1/fisiología , Células Madre Hematopoyéticas/fisiología , Desnutrición Proteico-Calórica/fisiopatología , Fase de Descanso del Ciclo Celular/fisiología , Animales , Ciclo Celular/fisiología , Ensayo de Unidades Formadoras de Colonias , Citometría de Flujo , Fluorouracilo , Masculino , Ratones , Desnutrición Proteico-Calórica/sangre
5.
Curr Top Microbiol Immunol ; 321: 3-26, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18727485

RESUMEN

Recognition of the microbial world is mediated chiefly by a small group of immune receptors that activate a characteristic host inflammatory response, the innate immune response. Known as the Toll-like receptors (TLRs), these molecules are represented among most metazoans. In mammals, forward genetic analysis of the lipopolysaccharide (LPS) response led to the identification of TLR4 as the LPS receptor. Through a combination of forward and reverse genetic studies, a relatively detailed understanding of the functions of mammalian TLRs has now been achieved. As discussed here, mutagenesis has revealed proteins that participate in TLR signaling pathways, and informed our understanding of the subtleties of these molecules' structure and function.


Asunto(s)
Inmunidad Innata/genética , Receptores Toll-Like/fisiología , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Animales , Drosophila melanogaster/inmunología , Humanos , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/fisiología , Factor 88 de Diferenciación Mieloide/fisiología , Transducción de Señal , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/fisiología , Receptores Toll-Like/química , Receptores Toll-Like/genética
7.
Curr Pharm Des ; 12(32): 4123-34, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17100615

RESUMEN

The identification of the TLRs as key sensors of microbial infection has presented a series of new targets for drug development. The TLRs are linked to the most powerful inflammatory pathways in mammals. The question arises from the start: do we wish to stimulate TLR signaling in order to eradicate specific infections and/or neoplastic diseases? Or do we wish to block TLR signaling to treat inflammatory diseases? If we accept that it would be useful to modulate TLR signaling, the next step is to identify the correct molecular target(s) for the task. Perhaps it might even be possible to exercise selectivity, modulating some aspects of TLR signaling and not others. Classical and reverse genetic analyses offer insight into the possibilities that exist, and point to specific checkpoints within signaling pathways at which modulation might normally be imposed.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/agonistas , Receptores Toll-Like/antagonistas & inhibidores , Infecciones Bacterianas/tratamiento farmacológico , Receptores Toll-Like/inmunología
8.
Nature ; 441(7091): E4; discussion E4, 2006 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-16710369

RESUMEN

Microbial components, such as lipopolysaccharides, augment immune responses by activating Toll-like receptors (TLRs). Some have interpreted this to mean that TLR signalling might not only help to initiate the adaptive immune response, but may also be required for it. The expanded view is shared by Pasare and Medzhitov, who conclude from an analysis of mice deficient in MyD88 (a TLR-signalling adaptor protein) that the generation of T-dependent antigen-specific antibody responses requires activation of TLRs in B cells. However, we show here that robust antibody responses can be elicited even in the absence of TLR signals. This appreciable TLR-independence of immune responses should be taken into account in the rational design of immunogenic and toleragenic vaccines.


Asunto(s)
Anticuerpos/inmunología , Formación de Anticuerpos/inmunología , Receptores Toll-Like/inmunología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Linfocitos B/inmunología , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Inmunológicos , Factor 88 de Diferenciación Mieloide , Reproducibilidad de los Resultados , Transducción de Señal , Linfocitos T/inmunología , Vacunas/inmunología
9.
Tissue Antigens ; 65(5): 395-401, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15853894

RESUMEN

With the mouse genome almost entirely sequenced and readily accessible to all who wish to examine it, the challenge across most biological disciplines now lies in the decipherment of gene and protein function rather than in the realm of gene identification per se. In the field of innate immunity, forward genetic methods have repeatedly been applied to identify key sensors, adapters, and effector molecules. However, most spontaneous mutations that affect innate immune function have been mapped and cloned, and the need for new monogenic phenotypes has been felt evermore keenly. N-Ethyl-N-nitrosourea (ENU) mutagenesis is an efficient tool for the creation of aberrant monogenic innate immune response phenotypes. In this review, we will discuss the potential of the forward genetic approach and ENU mutagenesis to identify new genes and new functions of known genes related to innate immunity.


Asunto(s)
Técnicas Genéticas , Inmunidad Innata/genética , Mutagénesis , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/fisiología , Antígenos CD36/genética , Antígenos CD36/fisiología , Etilnitrosourea/farmacología , Marcación de Gen , Genes Recesivos , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Noqueados , Modelos Inmunológicos , Mutágenos/farmacología , Factor 88 de Diferenciación Mieloide , Fenotipo , Receptores de Superficie Celular/fisiología , Receptores Inmunológicos/genética , Receptores Inmunológicos/fisiología , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/fisiología , Receptores Toll-Like
11.
J Leukoc Biol ; 74(4): 479-85, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12960260

RESUMEN

Macrophages and dendritic cells are in the front line of host defense. When they sense host invasion, they produce cytokines that alert other innate immune cells and also abet the development of an adaptive immune response. Although lipolysaccharide (LPS), peptidoglycan, unmethylated DNA, and other microbial products were long known to be the primary targets of innate immune recognition, there was puzzlement as to how each molecule triggered a response. It is now known that the Toll-like receptors (TLRs) are the principal signaling molecules through which mammals sense infection. Each TLR recognizes a restricted subset of molecules produced by microbes, and in some circumstances, only a single type of molecule is sensed (e.g., only LPS is sensed by TLR4). TLRs direct the activation of immune cells near to and far from the site of infection, mobilizing the comparatively vast immune resources of the host to confine and defeat an invasive organism before it has become widespread. The biochemical details of TLR signaling have been analyzed through forward and reverse genetic methods, and full elucidation of the molecular interactions that transpire within the first minutes following contact between host and pathogen will soon be at hand.


Asunto(s)
Inmunidad Innata , Infecciones/inmunología , Glicoproteínas de Membrana/fisiología , Receptores de Superficie Celular/fisiología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Diferenciación/fisiología , Humanos , Inflamación/inmunología , Lipopolisacáridos/toxicidad , Factor 88 de Diferenciación Mieloide , Receptores Inmunológicos/fisiología , Sepsis/inmunología , Receptor Toll-Like 4 , Receptores Toll-Like
12.
Nature ; 424(6950): 743-8, 2003 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-12872135

RESUMEN

In humans, ten Toll-like receptor (TLR) paralogues sense molecular components of microbes, initiating the production of cytokine mediators that create the inflammatory response. Using N-ethyl-N-nitrosourea, we induced a germline mutation called Lps2, which abolishes cytokine responses to double-stranded RNA and severely impairs responses to the endotoxin lipopolysaccharide (LPS), indicating that TLR3 and TLR4 might share a specific, proximal transducer. Here we identify the Lps2 mutation: a distal frameshift error in a Toll/interleukin-1 receptor/resistance (TIR) adaptor protein known as Trif or Ticam-1. Trif(Lps2) homozygotes are markedly resistant to the toxic effects of LPS, and are hypersusceptible to mouse cytomegalovirus, failing to produce type I interferons when infected. Compound homozygosity for mutations at Trif and MyD88 (a cytoplasmic TIR-domain-containing adaptor protein) loci ablates all responses to LPS, indicating that only two signalling pathways emanate from the LPS receptor. However, a Trif-independent cell population is detectable when Trif(Lps2) mutant macrophages are stimulated with LPS. This reveals that an alternative MyD88-dependent 'adaptor X' pathway is present in some, but not all, macrophages, and implies afferent immune specialization.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antígenos de Diferenciación/fisiología , Lipopolisacáridos/farmacología , Receptores Inmunológicos/fisiología , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Antígenos de Diferenciación/genética , Escherichia coli/fisiología , Homocigoto , Interferón Tipo I/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/microbiología , Macrófagos Peritoneales/virología , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Factor 88 de Diferenciación Mieloide , Fenotipo , Mapeo Físico de Cromosoma , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/genética , Análisis de Secuencia de ADN , Especificidad por Sustrato , Receptor Toll-Like 3 , Receptor Toll-Like 4 , Receptores Toll-Like , Factor de Necrosis Tumoral alfa/metabolismo , Virus Vaccinia/fisiología
13.
Curr Top Microbiol Immunol ; 270: 1-21, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12467241

RESUMEN

The mammalian toll-like receptors (TLRs) are products of an evolutionary process that began prior to the separation of plants and animals. The most conserved protein motif within the TLRs is the TIR, which denotes Toll, the Interleukin-1 receptor, and plant disease Resistance genes. To trace the ancestry of the TLRs, it is desirable to draw upon the sequences of TIR domains from TLRs of diverse vertebrate species, including species with known dates of divergence (i.e., representatives of Mammalia and Aves) in order to establish a relationship between time and genetic divergence. It appears that a gene ancestral to modern TLRs 1 and 6 duplicated approximately 130 million years ago, only shortly before the speciation event that led to humans and mice. Though it is not represented in mice, TLR10 split from the TLR[1/6] precursor about 300 million years ago. The origins of other TLRs are more ancient, dating to the origins of vertebrate life, and some present-day vertebrate species appear to have many more TLRs than others. Moreover, the patterns of TLR expression are quite variable at the level of tissues, even among closely related species. A given TLR in species that are related by descent from a common ancestor may acquire different duties within each descendant line, so that some microbial inducers are avidly recognized in one species but not in others; likewise the intensity and the antomic location of an innate immune response may vary considerably. In this review, we discuss the computational methods used to analyze divergence of the TIR, and the conclusions that may be safely drawn.


Asunto(s)
Proteínas de Drosophila , Evolución Molecular , Regulación de la Expresión Génica , Glicoproteínas de Membrana/genética , Receptores de Superficie Celular/genética , Receptores Inmunológicos/genética , Receptores de Interleucina-1/genética , Secuencia de Aminoácidos , Animales , Biología Computacional , Variación Genética , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Receptor Toll-Like 1 , Receptor Toll-Like 10 , Receptores Toll-Like
14.
Curr Top Microbiol Immunol ; 270: 109-20, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12467247

RESUMEN

For more than a century, the ability to sense endotoxin (later known also as lipopolysaccharide; LPS) stood as the archetypal innate immune response: even before the phrase 'innate immunity' became popular. Yet the mechanism by which LPS initiated a signal remained unknown. The problem was solved in 1998 by positional cloning, which revealed that Toll-like receptor (TLR) 4, one of ten mammalian paralogues with homology to the Drosophila protein Toll, is the central component of the LPS receptor. During the 3 years that followed, gene knockout work supported the view that the TLRs perceive a number of indispensable molecular structures shared by diverse representatives of the microbial world. The highly specific LPS-sensing function of TLR4 is remarkable for its prevalence in Mammalia, which to the present time is the only class of the phylum Chordata known to have a gene encoding TLR4, and known to display exquisite sensitivity to LPS. The fact that LPS signals are elicited through a single biochemical pathway has raised important pharmacotherapeutic opportunities as well.


Asunto(s)
Proteínas de Drosophila , Receptores de Lipopolisacáridos/genética , Lipopolisacáridos/inmunología , Glicoproteínas de Membrana/genética , Receptores de Superficie Celular/genética , Animales , Clonación Molecular , Evolución Molecular , Humanos , Inmunidad Innata/inmunología , Receptores de Lipopolisacáridos/inmunología , Mamíferos , Glicoproteínas de Membrana/inmunología , Receptores de Superficie Celular/inmunología , Receptor Toll-Like 4 , Receptores Toll-Like
15.
Wien Med Wochenschr ; 152(21-22): 547-51, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12506676

RESUMEN

Studies of sepsis conducted over the century have led to an understanding of many of the molecular events that take place during a severe infection. But what are the first events? Very recent genetic analyses have provided an answer to this question. Genetic studies have disclosed that bacterial endotoxin is sensed through a solitary biochemical pathway. At the heart of this pathway is the Toll-like receptor 4 (TLR4): one member of an ancient receptor family dedicated to the detection of infectious organisms. Most and perhaps all of the untoward effects of infection are initiated by the TLRs, ten of which are represented in humans. At the same time, it is known that TLRs are required to sense infection at its earliest stages, and thereby defeat it. The means to block TLR signal transduction is now at hand. Will this do good or harm?


Asunto(s)
Infecciones Bacterianas/inmunología , Proteínas de Drosophila , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Animales , Infecciones Bacterianas/genética , Humanos , Receptores de Lipopolisacáridos/genética , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/inmunología , Glicoproteínas de Membrana/genética , Receptores de Superficie Celular/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Especificidad de la Especie , Síndrome de Respuesta Inflamatoria Sistémica/genética , Receptor Toll-Like 4 , Receptores Toll-Like
16.
Biochem Soc Trans ; 29(Pt 6): 853-9, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11709087

RESUMEN

To the modern mind, the term 'sepsis' conjures up images of microbes. It is easy to forget that the word predates any understanding of the microbial origins of infectious disease. Derived from the Greek 'sepsios' (rotten), sepsis denotes decay: a phenomenon that humans once regarded as a mysterious though inevitable natural process. A living organism does not accept decay passively. Virtually all multicellular life forms are capable of resisting infection through the generation of a vigorous immune response. In mammals, the response is so stereotypic that it has come to define sepsis itself: it is often called the 'septic syndrome'. Our current understanding of the innate immune system is deeply rooted in the study of sepsis. The chain of events linking infection to tissue injury and cardiovascular collapse is not obvious, and affirmation of the concept required three major discoveries. First, the septic syndrome was found to be caused by toxic products of microbes. Secondly, these toxic substances were found to be toxic because of their propensity to activate cells of the innate immune system, prompting cytokine production. Thirdly, the activating events initiated by microbial toxins were traced to members of an ancient family of defensive molecules, versions of which operate in virtually all multicellular life forms. In mammals, proteins of this family are now known as Toll-like receptors. They represent a point of direct contact, and first contact, between a pathogen and the host immune system.


Asunto(s)
Proteínas de Drosophila , Glicoproteínas de Membrana/fisiología , Receptores de Superficie Celular/fisiología , Sepsis/microbiología , Sepsis/fisiopatología , Animales , Drosophila , Endotoxinas/farmacología , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ratones , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptor Toll-Like 5 , Receptores Toll-Like
18.
Genetics ; 158(4): 1657-64, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11514453

RESUMEN

The Toll-like receptor 4 protein acts as the transducing subunit of the lipopolysaccharide receptor complex and assists in the detection of Gram-negative pathogens within the mammalian host. Several lines of evidence support the view that variation at the TLR4 locus may alter host susceptibility to Gram-negative infection or the outcome of infection. Here, we surveyed TLR4 sequence variation in the complete coding region (2.4 kb) in 348 individuals from several population samples; in addition, a subset of the individuals was surveyed at 1.1 kb of intronic sequence. More than 90% of the chromosomes examined encoded the same structural isoform of TLR4, while the rest harbored 12 rare amino acid variants. Conversely, the variants at silent sites (intronic and synonymous positions) occur at both low and high frequencies and are consistent with a neutral model of mutation and random drift. The spectrum of allele frequencies for amino acid variants shows a significant skew toward lower frequencies relative to both the neutral model and the pattern observed at linked silent sites. This is consistent with the hypothesis that weak purifying selection acted on TLR4 and that most mutations affecting TLR4 protein structure have at least mildly deleterious phenotypic effects. These results may imply that genetic variants contributing to disease susceptibility occur at low frequencies in the population and suggest strategies for optimizing the design of disease-mapping studies.


Asunto(s)
Proteínas de Drosophila , Glicoproteínas de Membrana/genética , Polimorfismo Genético , Receptores de Superficie Celular/genética , Alelos , Aminoácidos/química , Animales , Evolución Biológica , Variación Genética , Gorilla gorilla , Haplotipos , Humanos , Mutación , Pan paniscus , Fenotipo , Reacción en Cadena de la Polimerasa , Pongo pygmaeus , Análisis de Secuencia de ADN , Receptor Toll-Like 4 , Receptores Toll-Like
20.
Crit Care Med ; 29(7 Suppl): S2-6; discussion S6-7, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11445725

RESUMEN

OBJECTIVE: To review the role of the Toll-like receptors (TLR) as the principal sensors used by the innate immune system in the context of the pathologic processes underlying sepsis and septic shock. DATA SOURCES: Literature review. DATA SUMMARY: Through the Toll-like receptors, macrophages and other defensive cells "see" endotoxin (TLR4), peptidoglycan (TLR2), and bacterial DNA (TLR9). Representatives of the family predated the divergence of plants and animals and, at that time, had already acquired a defensive function. The strengths and liabilities of the innate immune system, which defends against infection and which also may cause shock and death, are rooted in its ancient origins. In the current era of shock research, the nature of the signals that Toll-like receptors transduce and the effects of genetic variation on microbial sensing are two major challenges.


Asunto(s)
Evolución Biológica , Proteínas de Drosophila , Glicoproteínas de Membrana/inmunología , Receptores de Superficie Celular/inmunología , Sepsis/inmunología , Choque Séptico/inmunología , Animales , Anticuerpos/inmunología , Antígenos de Superficie/inmunología , ADN Bacteriano/inmunología , Variación Genética/genética , Variación Genética/inmunología , Humanos , Antígeno 96 de los Linfocitos , Linfocitos/inmunología , Macrófagos/inmunología , Glicoproteínas de Membrana/efectos de los fármacos , Glicoproteínas de Membrana/genética , Peptidoglicano/inmunología , Plantas/inmunología , Receptores de Superficie Celular/efectos de los fármacos , Receptores de Superficie Celular/genética , Sepsis/microbiología , Choque Séptico/microbiología , Transducción de Señal/inmunología , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Receptor Toll-Like 9 , Receptores Toll-Like
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...