Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Infect Dis ; 139: 168-170, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151115

RESUMEN

We evaluated the performance of 12 lateral flow devices by assessing their analytical sensitivity for SARS-CoV-2 variant BA.2.86. Kits from ACON, Orient Gene, Xiamen Biotime, Getein, and SureScreen detected variant BA.2.86 to sufficient sensitivity levels, comparable to those observed with previous Omicron variants. The stocks of lateral flow devices currently held by the UK government do not currently need changing for deployment for this variant.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Gobierno
2.
Viruses ; 15(5)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37243219

RESUMEN

The ongoing emergence of SARS-CoV-2 virus variants remains a source of concern because it is accompanied by the potential for increased virulence as well as evasion of immunity. Here we show that, although having an almost identical spike gene sequence as another Omicron variant (BA.5.2.1), a BA.4 isolate lacked all the typical disease characteristics of other isolates seen in the Golden Syrian hamster model despite replicating almost as effectively. Animals infected with BA.4 had similar viral shedding profiles to those seen with BA.5.2.1 (up to day 6 post-infection), but they all failed to lose weight or present with any other significant clinical signs. We hypothesize that this lack of detectable signs of disease during infection with BA.4 was due to a small (nine nucleotide) deletion (∆686-694) in the viral genome (ORF1ab) responsible for the production of non-structural protein 1, which resulted in the loss of three amino acids (aa 141-143).


Asunto(s)
COVID-19 , Animales , Cricetinae , SARS-CoV-2/genética , Mesocricetus , Aminoácidos , Glicoproteína de la Espiga del Coronavirus/genética
3.
Vaccine ; 41(19): 3047-3057, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037709

RESUMEN

Q fever is a highly infectious zoonosis caused by the Gram-negative bacterium Coxiella burnetii. The worldwide distribution of Q fever suggests a need for vaccines that are more efficacious, affordable, and does not induce severe adverse reactions in vaccine recipients with pre-existing immunity against Q fever. Potential Q fever vaccine antigens include lipopolysaccharide (LPS) and several C. burnetii surface proteins. Antibodies elicited by purified C. burnetii lipopolysaccharide (LPS) correlate with protection against Q fever, while antigens encoded by adenoviral vectored vaccines can induce cellular immune responses which aid clearing of intracellular pathogens. In the present study, the immunogenicity and the protection induced by adenoviral vectored constructs formulated with the addition of LPS were assessed. Multiple vaccine constructs encoding single or fusion antigens from C. burnetii were synthesised. The adenoviral vectored vaccine constructs alone elicited strong cellular immunity, but this response was not correlative with protection in mice. However, vaccination with LPS was significantly associated with lower weight loss post-bacterial challenge independent of co-administration with adenoviral vaccine constructs, supporting further vaccine development based on LPS.


Asunto(s)
Vacunas contra el Adenovirus , Coxiella burnetii , Fiebre Q , Animales , Ratones , Coxiella burnetii/genética , Fiebre Q/prevención & control , Lipopolisacáridos , Vacunas Bacterianas/genética , Vacunación , Inmunización , Adenoviridae/genética
4.
PLoS Pathog ; 19(4): e1011293, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014911

RESUMEN

The mutation profile of the SARS-CoV-2 Omicron (lineage BA.1) variant posed a concern for naturally acquired and vaccine-induced immunity. We investigated the ability of prior infection with an early SARS-CoV-2 ancestral isolate (Australia/VIC01/2020, VIC01) to protect against disease caused by BA.1. We established that BA.1 infection in naïve Syrian hamsters resulted in a less severe disease than a comparable dose of the ancestral virus, with fewer clinical signs including less weight loss. We present data to show that these clinical observations were almost absent in convalescent hamsters challenged with the same dose of BA.1 50 days after an initial infection with ancestral virus. These data provide evidence that convalescent immunity against ancestral SARS-CoV-2 is protective against BA.1 in the Syrian hamster model of infection. Comparison with published pre-clinical and clinical data supports consistency of the model and its predictive value for the outcome in humans. Further, the ability to detect protection against the less severe disease caused by BA.1 demonstrates continued value of the Syrian hamster model for evaluation of BA.1-specific countermeasures.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , Convalecencia , Mesocricetus , SARS-CoV-2
5.
Viruses ; 15(3)2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36992342

RESUMEN

In the summer of 2020, it became clear that the genetic composition of SARS-CoV-2 was changing rapidly. This was highlighted by the rapid emergence of the D614G mutation at that time. In the autumn of 2020, the project entitled "Agility" was initiated with funding from the Coalition for Epidemic Preparedness Innovations (CEPI) to assess new variants of SARS-CoV-2. The project was designed to reach out and intercept swabs containing live variant viruses in order to generate highly characterised master and working stocks, and to assess the biological consequences of the rapid genetic changes using both in vitro and in vivo approaches. Since November 2020, a total of 21 variants have been acquired and tested against either a panel of convalescent sera from early in the pandemic, and/or a panel of plasma from triple-vaccinated participants. A pattern of continuous evolution of SARS-CoV-2 has been revealed. Sequential characterisation of the most globally significant variants available to us, generated in real-time, indicated that the most recent Omicron variants appear to have evolved in a manner that avoids immunological recognition by convalescent plasma from the era of the ancestral virus when analysed in an authentic virus neutralisation assay.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Sueroterapia para COVID-19 , Mutación , Pandemias , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
6.
Viruses ; 15(3)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36992457

RESUMEN

The golden Syrian hamster (Mesocricetus auratus) is now commonly used in preclinical research for the study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the assessment of vaccines, drugs and therapeutics. Here, we show that hamsters inoculated via the intranasal route with the same infectious virus dose of prototypical SARS-CoV-2 administered in a different volume present with different clinical signs, weight loss and viral shedding, with a reduced volume resulting in reduced severity of disease similar to that obtained by a 500-fold reduction in the challenge dose. The tissue burden of the virus and the severity of pulmonary pathology were also significantly affected by different challenge inoculum volumes. These findings suggest that a direct comparison between the severity of SARS-CoV-2 variants or studies assessing the efficacy of treatments determined by hamster studies cannot be made unless both the challenge dose and inoculation volume are matched when using the intranasal route. Additionally, analysis of sub-genomic and total genomic RNA PCR data demonstrated no link between sub-genomic and live viral titres and that sub-genomic analyses do not provide any information beyond that provided by more sensitive total genomic PCR.


Asunto(s)
COVID-19 , Cricetinae , Animales , Humanos , Mesocricetus , COVID-19/patología , SARS-CoV-2 , Pulmón , Gravedad del Paciente , Modelos Animales de Enfermedad
7.
Front Microbiol ; 12: 760698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917048

RESUMEN

Finafloxacin is a novel fluoroquinolone with optimal antibacterial activity in low pH environments, therefore offering a therapeutic advantage over some traditional antibiotics, in treating bacterial infections associated with acidic foci. Coxiella burnetii, the causative agent of Q fever, is a bacterium which resides and replicates in acidic intracellular parasitic vacuoles. The efficacy of finafloxacin was evaluated in vivo using the A/J mouse model of inhalational Q fever and was compared to doxycycline, the standard treatment for this infection and ciprofloxacin, a comparator fluoroquinolone. Finafloxacin reduced the severity of the clinical signs of infection and weight loss associated with Q fever, but did not reduce the level of bacterial colonization in tissues compared to doxycycline or ciprofloxacin. However, histopathological analysis suggested that treatment with finafloxacin reduced tissue damage associated with C. burnetii infection. In addition, we report for the first time, the use of viable counts on axenic media to evaluate antibiotic efficacy in vivo.

8.
Sci Adv ; 7(37): eabg7996, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516768

RESUMEN

There is an urgent requirement for safe and effective vaccines to prevent COVID-19. A concern for the development of new viral vaccines is the potential to induce vaccine-enhanced disease (VED). This was reported in several preclinical studies with both SARS-CoV-1 and MERS vaccines but has not been reported with SARS-CoV-2 vaccines. We have used ferrets and rhesus macaques challenged with SARS-CoV-2 to assess the potential for VED in animals vaccinated with formaldehyde-inactivated SARS-CoV-2 (FIV) formulated with Alhydrogel, compared to a negative control vaccine. We showed no evidence of enhanced disease in ferrets or rhesus macaques given FIV except for mild transient enhanced disease seen 7 days after infection in ferrets. This increased lung pathology was observed at day 7 but was resolved by day 15. We also demonstrate that formaldehyde treatment of SARS-CoV-2 reduces exposure of the spike receptor binding domain providing a mechanistic explanation for suboptimal immunity.

9.
Elife ; 102021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34586068

RESUMEN

Age is the major risk factor for mortality after SARS-CoV-2 infection and older people have received priority consideration for COVID-19 vaccination. However, vaccine responses are often suboptimal in this age group and few people over the age of 80 years were included in vaccine registration trials. We determined the serological and cellular response to spike protein in 100 people aged 80-96 years at 2 weeks after the second vaccination with the Pfizer BNT162b2 mRNA vaccine. Antibody responses were seen in every donor with high titers in 98%. Spike-specific cellular immune responses were detectable in only 63% and correlated with humoral response. Previous SARS-CoV-2 infection substantially increased antibody responses after one vaccine and antibody and cellular responses remained 28-fold and 3-fold higher, respectively, after dual vaccination. Post-vaccine sera mediated strong neutralization of live Victoria infection and although neutralization titers were reduced 14-fold against the P.1 variant first discovered in Brazil they remained largely effective. These data demonstrate that the mRNA vaccine platform delivers strong humoral immunity in people up to 96 years of age and retains broad efficacy against the P.1 variant of concern.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , ARN Mensajero/inmunología , SARS-CoV-2/inmunología , Factores de Edad , Anciano de 80 o más Años , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/epidemiología , COVID-19/metabolismo , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral/inmunología , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos
10.
J Virol ; 95(24): e0083321, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34586862

RESUMEN

Filoviruses cause high-consequence infections with limited approved medical countermeasures (MCMs). MCM development is dependent upon well-characterized animal models for the assessment of antiviral agents and vaccines. Following large-scale Ebola virus (EBOV) disease outbreaks in Africa, some survivors are left with long-term sequelae and persistent virus in immune-privileged sites for many years. We report the characterization of the ferret as a model for Ebola virus infection, reproducing disease and lethality observed in humans. The onset of clinical signs is rapid, and EBOV is detected in the blood, oral, and rectal swabs and all tissues studied. We identify viral RNA in the eye (a site of immune privilege) and report on specific genomic changes in EBOV present in this structure. Thus, the ferret model has utility in testing MCMs that prevent or treat long-term EBOV persistence in immune-privileged sites. IMPORTANCE Recent reemergence of Ebola in Guinea that caused over 28,000 cases between 2013 and 2016 has been linked to the original virus from that region. It appears the virus has remained in the region for at least 5 years and is likely to have been maintained in humans. Persistence of Ebola in areas of the body for extended periods of time has been observed, such as in the eye and semen. Despite the importance of reintroduction of Ebola from this route, such events are rare in the population, which makes studying medical interventions to clear persistent virus difficult. We studied various doses of Ebola in ferrets and detected virus in the eyes of most ferrets. We believe this model will enable the study of medical interventions that promote clearance of Ebola virus from sites that promote persistence.


Asunto(s)
Ebolavirus/genética , Evolución Molecular , Ojo/virología , Fiebre Hemorrágica Ebola/fisiopatología , Fiebre Hemorrágica Ebola/virología , Animales , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Ebolavirus/inmunología , Femenino , Hurones/inmunología , Fiebre Hemorrágica Ebola/inmunología , Masculino , ARN Viral/genética
11.
Commun Biol ; 4(1): 915, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312487

RESUMEN

Vaccines against SARS-CoV-2 are urgently required, but early development of vaccines against SARS-CoV-1 resulted in enhanced disease after vaccination. Careful assessment of this phenomena is warranted for vaccine development against SARS CoV-2. Here we report detailed immune profiling after ChAdOx1 nCoV-19 (AZD1222) and subsequent high dose challenge in two animal models of SARS-CoV-2 mediated disease. We demonstrate in rhesus macaques the lung pathology caused by SARS-CoV-2 mediated pneumonia is reduced by prior vaccination with ChAdOx1 nCoV-19 which induced neutralising antibody responses after a single intramuscular administration. In a second animal model, ferrets, ChAdOx1 nCoV-19 reduced both virus shedding and lung pathology. Antibody titre were boosted by a second dose. Data from these challenge models on the absence of enhanced disease and the detailed immune profiling, support the continued clinical evaluation of ChAdOx1 nCoV-19.


Asunto(s)
Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , ChAdOx1 nCoV-19 , Hurones , Macaca mulatta
12.
NPJ Vaccines ; 6(1): 83, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140522

RESUMEN

An array of SARS-CoV-2 virus variants have been isolated, propagated and used in in vitro assays, in vivo animal studies and human clinical trials. Observations of working stocks of SARS-CoV-2 suggest that sequential propagation in Vero cells leads to critical changes in the region of the furin cleavage site, which significantly reduce the value of the working stock for critical research studies. Serially propagating SARS-CoV-2 in Vero E6 cells leads to rapid increases in genetic variants while propagation in other cell lines (e.g. Vero/hSLAM) appears to mitigate this risk thereby improving the overall genetic stability of working stocks. From these observations, investigators are urged to monitor genetic variants carefully when propagating SARS-CoV-2 in Vero cells.

13.
Nat Protoc ; 16(6): 3114-3140, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33893470

RESUMEN

Virus neutralization assays measure neutralizing antibodies in serum and plasma, and the plaque reduction neutralization test (PRNT) is considered the gold standard for measuring levels of these antibodies for many viral diseases. We have developed procedures for the standard PRNT, microneutralization assay (MNA) and pseudotyped virus neutralization assay (PNA) for severe acute respiratory syndrome coronavirus 2. The MNA offers advantages over the PRNT by reducing assay time, allowing increased throughput and reducing operator workload while remaining dependent upon the use of wild-type virus. This ensures that all severe acute respiratory syndrome coronavirus 2 antigens are present, but Biosafety Level 3 facilities are required. In addition to the advantages of MNA, PNA can be performed with lower biocontainment (Biosafety Level 2 facilities) and allows for further increases in throughput. For each new vaccine, it is critical to ensure good correlation of the neutralizing activity measured using PNA against the PRNT or MNA. These assays have been used in the development and licensure of the ChAdOx1 nCoV-19 (AstraZeneca; Oxford University) and Ad26.COV2.S (Janssen) coronavirus disease 2019 vaccines and are critical for demonstrating bioequivalence of future vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , Ad26COVS1 , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , ChAdOx1 nCoV-19 , Humanos , Pruebas de Neutralización/economía , Factores de Tiempo
14.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33743891

RESUMEN

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Células CHO , COVID-19/epidemiología , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Pandemias , Unión Proteica , Relación Estructura-Actividad , Células Vero
15.
Cell ; 184(9): 2348-2361.e6, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33730597

RESUMEN

The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.


Asunto(s)
Vacunas contra la COVID-19/sangre , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Chlorocebus aethiops , Ensayos Clínicos como Asunto , Células HEK293 , Humanos , Inmunización Pasiva , Modelos Moleculares , Mutación/genética , Pruebas de Neutralización , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Células Vero , Sueroterapia para COVID-19
16.
Nat Commun ; 12(1): 1260, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627662

RESUMEN

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Pulmón/patología , Pulmón/virología , Animales , Modelos Animales de Enfermedad , Femenino , Inmunidad Celular/fisiología , Interferón gamma/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Pandemias , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
17.
Nat Commun ; 12(1): 81, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398055

RESUMEN

There is a vital need for authentic COVID-19 animal models to enable the pre-clinical evaluation of candidate vaccines and therapeutics. Here we report a dose titration study of SARS-CoV-2 in the ferret model. After a high (5 × 106 pfu) and medium (5 × 104 pfu) dose of virus is delivered, intranasally, viral RNA shedding in the upper respiratory tract (URT) is observed in 6/6 animals, however, only 1/6 ferrets show similar signs after low dose (5 × 102 pfu) challenge. Following sequential culls pathological signs of mild multifocal bronchopneumonia in approximately 5-15% of the lung is seen on day 3, in high and medium dosed groups. Ferrets re-challenged, after virus shedding ceased, are fully protected from acute lung pathology. The endpoints of URT viral RNA replication & distinct lung pathology are observed most consistently in the high dose group. This ferret model of SARS-CoV-2 infection presents a mild clinical disease.


Asunto(s)
COVID-19/inmunología , Modelos Animales de Enfermedad , Hurones/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Pulmón/inmunología , Pulmón/patología , ARN Viral/aislamiento & purificación , SARS-CoV-2/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/inmunología , Esparcimiento de Virus/efectos de los fármacos , Esparcimiento de Virus/inmunología
18.
Viruses ; 13(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467732

RESUMEN

Ferrets were experimentally inoculated with SARS-CoV-2 (severe acute respiratory syndrome (SARS)-related coronavirus 2) to assess infection dynamics and host response. During the resulting subclinical infection, viral RNA was monitored between 2 and 21 days post-inoculation (dpi), and reached a peak in the upper respiratory cavity between 4 and 6 dpi. Viral genomic sequence analysis in samples from three animals identified the Y453F nucleotide substitution relative to the inoculum. Viral RNA was also detected in environmental samples, specifically in swabs of ferret fur. Microscopy analysis revealed viral protein and RNA in upper respiratory tract tissues, notably in cells of the respiratory and olfactory mucosae of the nasal turbinates, including olfactory neuronal cells. Antibody responses to the spike and nucleoprotein were detected from 21 dpi, but virus-neutralizing activity was low. A second intranasal inoculation (re-exposure) of two ferrets after a 17-day interval did not produce re-initiation of viral RNA shedding, but did amplify the humoral response in one animal. Therefore, ferrets can be experimentally infected with SARS-CoV-2 to model human asymptomatic infection.


Asunto(s)
Enfermedades Asintomáticas , COVID-19/virología , Modelos Animales de Enfermedad , SARS-CoV-2/fisiología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico , COVID-19/patología , COVID-19/transmisión , Femenino , Hurones , Genoma Viral/genética , Mutación , Mucosa Nasal/virología , ARN Viral/genética , SARS-CoV-2/aislamiento & purificación , Carga Viral , Esparcimiento de Virus
19.
Front Immunol ; 12: 801799, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35222355

RESUMEN

The tuberculosis vaccine, Bacille Calmette-Guerin (BCG), also affords protection against non-tuberculous diseases attributable to heterologous immune mechanisms such as trained innate immunity, activation of non-conventional T-cells, and cross-reactive adaptive immunity. Aerosol vaccine delivery can target immune responses toward the primary site of infection for a respiratory pathogen. Therefore, we hypothesised that aerosol delivery of BCG would enhance cross-protective action against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and be a deployable intervention against coronavirus disease 2019 (COVID-19). Immune parameters were monitored in vaccinated and unvaccinated rhesus macaques for 28 days following aerosol BCG vaccination. High-dose SARS-CoV-2 challenge was applied by intranasal and intrabronchial instillation and animals culled 6-8 days later for assessment of viral, disease, and immunological parameters. Mycobacteria-specific cell-mediated immune responses were detected following aerosol BCG vaccination, but SARS-CoV-2-specific cellular- and antibody-mediated immunity was only measured following challenge. Early secretion of cytokine and chemokine markers associated with the innate cellular and adaptive antiviral immune response was detected following SARS-CoV-2 challenge in vaccinated animals, at concentrations that exceeded titres measured in unvaccinated macaques. Classical CD14+ monocytes and Vδ2 γδ T-cells quantified by whole-blood immunophenotyping increased rapidly in vaccinated animals following SARS-CoV-2 challenge, indicating a priming of innate immune cells and non-conventional T-cell populations. However, viral RNA quantified in nasal and pharyngeal swabs, bronchoalveolar lavage (BAL), and tissue samples collected at necropsy was equivalent in vaccinated and unvaccinated animals, and in-life CT imaging and histopathology scoring applied to pulmonary tissue sections indicated that the disease induced by SARS-CoV-2 challenge was comparable between vaccinated and unvaccinated groups. Hence, aerosol BCG vaccination did not induce, or enhance the induction of, SARS-CoV-2 cross-reactive adaptive cellular or humoral immunity, although an influence of BCG vaccination on the subsequent immune response to SARS-CoV-2 challenge was apparent in immune signatures indicative of trained innate immune mechanisms and primed unconventional T-cell populations. Nevertheless, aerosol BCG vaccination did not enhance the initial clearance of virus, nor reduce the occurrence of early disease pathology after high dose SARS-CoV-2 challenge. However, the heterologous immune mechanisms primed by BCG vaccination could contribute to the moderation of COVID-19 disease severity in more susceptible species following natural infection.


Asunto(s)
Vacuna BCG/inmunología , COVID-19/inmunología , ADN Viral/análisis , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Inmunidad Adaptativa , Aerosoles , Animales , Reacciones Cruzadas , Modelos Animales de Enfermedad , Humanos , Inmunidad Heteróloga , Inmunidad Innata , Inmunomodulación , Activación de Linfocitos , Macaca mulatta , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Vacunación
20.
EBioMedicine ; 63: 103153, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33279857

RESUMEN

BACKGROUND: The novel human coronavirus SARS-CoV-2 is a major ongoing global threat with huge economic burden. Like all respiratory viruses, SARS-CoV-2 initiates infection in the upper respiratory tract (URT). Infected individuals are often asymptomatic, yet highly infectious and readily transmit virus. A therapy that restricts initial replication in the URT has the potential to prevent progression of severe lower respiratory tract disease as well as limiting person-to-person transmission. METHODS: SARS-CoV-2 Victoria/01/2020 was passaged in Vero/hSLAM cells and virus titre determined by plaque assay. Challenge virus was delivered by intranasal instillation to female ferrets at 5.0 × 106 pfu/ml. Treatment groups received intranasal INNA-051, developed by Ena Respiratory. SARS-CoV-2 RNA was detected using the 2019-nCoV CDC RUO Kit and QuantStudio™ 7 Flex Real-Time PCR System. Histopathological analysis was performed using cut tissues stained with haematoxylin and eosin (H&E). FINDINGS: We show that prophylactic intra-nasal administration of the TLR2/6 agonist INNA-051 in a SARS-CoV-2 ferret infection model effectively reduces levels of viral RNA in the nose and throat. After 5 days post-exposure to SARS-CoV-2, INNA-051 significantly reduced virus in throat swabs (p=<0.0001) by up to a 24 fold (96% reduction) and in nasal wash (p=0.0107) up to a 15 fold (93% reduction) in comparison to untreated animals. INTERPRETATION: The results of our study support clinical development of a therapy based on prophylactic TLR2/6 innate immune activation in the URT, to reduce SARS-CoV-2 transmission and provide protection against COVID-19. FUNDING: This work was funded by Ena Respiratory, Melbourne, Australia.


Asunto(s)
Lipopéptidos/administración & dosificación , Sistema Respiratorio/virología , SARS-CoV-2/patogenicidad , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 6/agonistas , Esparcimiento de Virus , Administración Intranasal , Animales , COVID-19/patología , Modelos Animales de Enfermedad , Femenino , Hurones , Inmunidad Innata , Lipopéptidos/química , Lipopéptidos/farmacología , Cavidad Nasal/patología , Cavidad Nasal/virología , Faringe/patología , Faringe/virología , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Sistema Respiratorio/patología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Carga Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA