Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(11): 104115, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39303323

RESUMEN

The widespread use of antibiotics causes the development of antibiotic-resistant bacterial strains, which have a severe impact on poultry productivity and human health. As a result, research is continuing to develop safe natural antibiotic alternatives. In the current study, Bacillus pumilus SA388 was isolated from the chicken feces and confirmed to be a probiotic. The selected strain was tested for its antimutagenic and antioxidant capabilities before being employed as a probiotic food supplement and antibiotic alternative. The effect of B. pumilus SA388 impact on broiler chickens' growth performance, gut microbiome, blood biochemical markers, immunological response, and meat quality was also studied. B. pumilus SA388 showed significant bactericidal activity against Streptococcus pyogenes, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Klebsiella pneumonia. A total of 200 chickens were used in the present study, divided equally among four experimental groups (ten birds per group with 5 replicates): group 1 (control, G1) received a basal diet without B. pumilus SA388, group 2 (G2) received a basal diet supplemented with 0.4 mg/kg of B. pumilus SA388, group 3 (G3) received a basal diet supplemented with 0.8 mg/kg of B. pumilus SA388, and group 4 (G4) received a basal diet supplemented with 1.6 mg/kg of B. pumilus SA388. Over 35 d, the B. pumilus SA388-supplemented groups outperformed the G1 in terms of body weight gain, performance index, and feed conversion ratio, with a preference for the G4 treatment. The levels of alanine aminotransferase (ALT), aspartate transaminase (AST), low-density lipoprotein (LDL), and total cholesterol decreased significantly (P < 0.05) with increasing B. pumilus SA388 dosages compared to the control G1 group. Dietary supplementation of B. pumilus SA388 at 1.6 mg/kg (G4) significantly (P < 0.05) resulted in improved lipid profile, immunological response, thyroid function, and gut microbiota compared to the control group (G1). Compared to the broilers in the control treatment (G1), the addition of B. pumilus SA388 to broilers in G4 significantly (P < 0.05) enhanced juiciness, tenderness, aroma, and taste. Adding B. pumilus SA388 to chicken feed at different doses significantly (P < 0.05) decreased average feed intake while increasing economic and relative efficiency measures. In conclusion, B. pumilus SA388 has been proven to be an effective antibiotic and nutritional supplement.


Asunto(s)
Alimentación Animal , Bacillus pumilus , Pollos , Dieta , Microbioma Gastrointestinal , Carne , Probióticos , Animales , Pollos/crecimiento & desarrollo , Pollos/inmunología , Pollos/fisiología , Probióticos/administración & dosificación , Probióticos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Alimentación Animal/análisis , Dieta/veterinaria , Carne/análisis , Ciego/microbiología , Análisis Químico de la Sangre/veterinaria , Suplementos Dietéticos/análisis , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Masculino , Distribución Aleatoria
2.
Poult Sci ; 103(5): 103601, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503136

RESUMEN

This experiment investigated the influence of different synbiotic processing methods on the intestinal bacterial count, morphology and histological status of developed male Mandarah chicks. Two hundred and ten male Mandarah line chicks aged 1 d were randomized to receive one of 7 chicks. The method and dose for 1-time synbiotics administration to the day-old chicks were as follows: G1: chicks on basal diet received no treatment (control); G2: 0.25 mL synbiotics sprayed; G3: 0.50 mL synbiotics sprayed; G4: 0.25 mL of synbiotics are added to drinking water; G5: 0.50 mL of synbiotics are added to drinking water; G6: 0.25 mL of synbiotics dripped into the mouth; and G7: 0.50 mL of synbiotics dripped into mouth drops. Lactic acid bacteria(LAB) were significantly increased (P<0.0001) compared to the control group and other treated groups and had the maximum values after the use of synbiotics via drinking water (0.25 or 0.50 mL). Furthermore, when comparing the treated birds (G4, G5) with the control birds, the Escherichia coli concentration in the drinking water containing synbiotics was significantly lower. In addition, treated chickens at (G7) showed a higher duodenum, ileum villus height (VH), and VH. - Ileum crypt depth (CD) ratio compared to other groups. In addition, birds treated with 0.50 mL of synbiotics in drinking water (G5) performed better in duodenum, ileum, CD and VH. - CD ratio than the other groups. Meanwhile, intestinal tract length and visceral pH did not differ significantly between groups. It can be concluded that the use of 0.25 mL of synbiotics in drinking water can improve the overall health of birds.


Asunto(s)
Pollos , Dieta , Intestinos , Simbióticos , Animales , Pollos/fisiología , Masculino , Simbióticos/administración & dosificación , Dieta/veterinaria , Intestinos/anatomía & histología , Intestinos/microbiología , Distribución Aleatoria , Alimentación Animal/análisis , Carga Bacteriana , Microbioma Gastrointestinal , Agua Potable/microbiología
3.
Saudi J Biol Sci ; 31(1): 103880, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38161386

RESUMEN

The food sector generates massive amounts of waste, which are rich in active compounds, especially polyphenols; therefore, valorizing these wastes is a global trend. In this study, we produce silver nanoparticles from pomegranate wastes, characterized by enhanced antioxidant, anticancer, antiviral, and antimicrobial properties and investigated their potential to maintain the fruit quality for sixty days in market. The pomegranate waste-mediated silver nanoparticles (PPAgNPs) were spherical shape (measured by TEM), 20 nm (Zeta sizer), negatively charged -25.98 mV (Zeta potential), and surrounded by active groups (FTIR). The PPAgNPs scavenged 94 % of DPPH radicals and inhibited the growth of pathogens, i.e., Staphylococcus aureus, Listeria monocytogenes, Campylobacter jejuni, Salmonella typhi and Candida with inhibition zones diameters (16-45 mm). They impeded the development of breast and colon cancer cell lines by 80 and 78 %, increased the activity of apoptosis marker caspase 3, and inhibited 82 % of COVID-19. The PPAgNPs were added to the rat diet at 80, 160, and 320 µg/kg levels. PPAgNPs administered at a concentration of 160 µg/kg in the rat diet resulted in the best growth performance, normal liver and kidney parameters (p = 0.029-0.038), lowered lipid profile, malondialdhyde (MDA), and raised glutathion reduced (GSH), total protein (TP). Also, the reduced gene expression of Interleukin 6 (IL-6) and Tumor necrosis factor alpha (TNF-α) in albino rats' serum indicates the anti-inflammatory effect of PPAgNPs. PPAgNPs developed a functional coating to preserve mandarin fruit for 60 days by dipping technique. The active coat containing PPAgNPs can effectively preserve the fruit for 60 days.

4.
Poult Sci ; 103(2): 103239, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38035472

RESUMEN

The search for a natural antimicrobial agent is ongoing and critical because of the rise and rapid proliferation of antibiotic-resistant pathogenic bacteria. The current study aims to examine the effect of Paenibacillus polymyxa AM20 as an alternative antibiotic and feed additive on Indian river broiler performance, digestive enzymes, thyroid hormones, lipid profile, hepatosomatic index, immunological response, gut bacteria, and antioxidant parameters. The bacterial isolate AM20 was identified at the gene level by isolating DNA and using PCR to detect genes. Based on 16S rRNA gene sequence analysis, the bacterial isolate was identified as Paenibacillus polymyxa. One hundred twenty Indian river broilers (1-day old) were randomly divided into 4 groups of 10 chicks each, with 3 replicates. The control group was fed a basal diet only, while the other 3 were administered control diets supplemented with P. polymyxa at 3 concentrations: 0.5, 1, and 1.5 mg/kg. The findings revealed that all groups that received graded amounts of P. polymyxa increased all growth parameters throughout the study. P. polymyxa treatment at 1.5 mg/kg increased body gain by 9% compared to the control due to increased feed intake (P = 0.0001), growth rate (P = 0.0001), and decreased feed conversion ratio. Compared to the control group, P. polymyxa (1.5 mg/kg) enhanced kidney functions in chickens by reducing uric acid and creatinine levels (P = 0.0451). Compared to the control group, alanine aminotransferase and aspartate transaminase levels in the liver were significantly reduced at all P. polymyxa doses. Liver function values were highest for P. polymyxa at 1.5 mg/kg. Compared to the control group, those whose diets included P. polymyxa had significantly better blood cholesterol levels, high-density lipoprotein, low-density lipoprotein, immunological response, thyroid function, and gut microbiota. In general, broiler chickens' economic efficiency was improved by including P. polymyxa in their diet, which also improved their growth performance, carcass dressing, specific blood biochemical levels and enzymes, and the composition of the gut microbiota.


Asunto(s)
Paenibacillus polymyxa , Probióticos , Animales , Antioxidantes/metabolismo , Pollos/fisiología , ARN Ribosómico 16S , Dieta/veterinaria , Suplementos Dietéticos , Probióticos/farmacología , Antibacterianos , Inmunidad , Hormonas Tiroideas , Lípidos , Alimentación Animal/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...