Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Birth Defects Res ; 115(7): 797-800, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36855851

RESUMEN

BACKGROUND: The sixth Strategic Planning Session of the Society for Birth Defects Research and Prevention (BDRP) was held on April 24-25, 2022, in Alexandria, VA. METHODS: This effort built upon previous strategic planning sessions, conducted every 5 years. RESULTS: The overall process was designed to identify BDRP's vision, purpose, culture, and potential, as well as to communicate the value that BDRP brings to its members, volunteers, partners, and the greater community. CONCLUSIONS: The BDRP 2022-2027 Strategic Plan provides the BDRP leadership, members, and staff with a clearly articulated framework and direction to support long-term sustainability and growth of the society.


Asunto(s)
Liderazgo , Sociedades , Humanos , Proyectos de Investigación
2.
Crit Rev Toxicol ; 46(10): 900-910, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27848393

RESUMEN

Regulatory non-clinical safety testing of human pharmaceuticals typically requires embryo-fetal developmental toxicity (EFDT) testing in two species (one rodent and one non-rodent). The question has been raised whether under some conditions EFDT testing could be limited to one species, or whether the testing in a second species could be decided on a case-by-case basis. As part of a consortium initiative, we built and queried a database of 379 compounds with EFDT studies (in both rat and rabbit animal models) conducted for marketed and non-marketed pharmaceuticals for their potential for adverse developmental and maternal outcomes, including EFDT incidence and the nature and severity of adverse findings. Manifestation of EFDT in either one or both species was demonstrated for 282 compounds (74%). EFDT was detected in only one species (rat or rabbit) in almost a third (31%, 118 compounds), with 58% (68 compounds) of rat studies and 42% (50 compounds) of rabbit studies identifying an EFDT signal. For 24 compounds (6%), fetal malformations were observed in one species (rat or rabbit) in the absence of any EFDT in the second species. In general, growth retardation, fetal variations, and malformations were more prominent in the rat, whereas embryo-fetal death was observed more often in the rabbit. Discordance across species may be attributed to factors such as maternal toxicity, study design differences, pharmacokinetic differences, and pharmacologic relevance of species. The current analysis suggests that in general both species are equally sensitive on the basis of an overall EFDT LOAEL comparison, but selective EFDT toxicity in one species is not uncommon. Also, there appear to be species differences in the prevalence of various EFDT manifestations (i.e. embryo-fetal death, growth retardation, and dysmorphogenesis) between rat and rabbit, suggesting that the use of both species has a higher probability of detecting developmental toxicants than either one alone.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Sustancias Peligrosas/toxicidad , Modelos Animales , Pruebas de Mutagenicidad/métodos , Teratógenos/toxicidad , Anomalías Inducidas por Medicamentos , Animales , Conejos , Ratas
3.
Regul Toxicol Pharmacol ; 77: 100-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26930635

RESUMEN

During the past two decades the use and refinements of imaging modalities have markedly increased making it possible to image embryos and fetuses used in pivotal nonclinical studies submitted to regulatory agencies. Implementing these technologies into the Good Laboratory Practice environment requires rigorous testing, validation, and documentation to ensure the reproducibility of data. A workshop on current practices and regulatory requirements was held with the goal of defining minimal criteria for the proper implementation of these technologies and subsequent submission to regulatory agencies. Micro-computed tomography (micro-CT) is especially well suited for high-throughput evaluations, and is gaining popularity to evaluate fetal skeletons to assess the potential developmental toxicity of test agents. This workshop was convened to help scientists in the developmental toxicology field understand and apply micro-CT technology to nonclinical toxicology studies and facilitate the regulatory acceptance of imaging data. Presentations and workshop discussions covered: (1) principles of micro-CT fetal imaging; (2) concordance of findings with conventional skeletal evaluations; and (3) regulatory requirements for validating the system. Establishing these requirements for micro-CT examination can provide a path forward for laboratories considering implementing this technology and provide regulatory agencies with a basis to consider the acceptability of data generated via this technology.


Asunto(s)
Anomalías Inducidas por Medicamentos/diagnóstico por imagen , Huesos/diagnóstico por imagen , Biología Evolutiva/métodos , Feto/diagnóstico por imagen , Pruebas de Toxicidad/métodos , Microtomografía por Rayos X , Animales , Huesos/anomalías , Huesos/efectos de los fármacos , Consenso , Biología Evolutiva/normas , Feto/anomalías , Feto/efectos de los fármacos , Guías como Asunto , Humanos , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Pruebas de Toxicidad/normas , Microtomografía por Rayos X/normas
4.
Reprod Toxicol ; 59: 22-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26854737

RESUMEN

Small molecule pharmaceutical products are assumed to reach concentrations in semen similar to those in blood plasma. Exposure modeling for these small-molecule products in humans assumes a daily dose of 5mL of semen and 100% absorption from the vagina with distribution to the conceptus through the maternal systemic circulation. Monoclonal antibody drugs are present in semen at concentrations about 2% or less of those in blood, and the modeling used for small molecules will over-estimate the possibility of conceptus exposure to immunoglobulins. It is not known whether peptide products reach semen, but in general peptide medications are destroyed by vaginal peptidases, and conceptus exposure is predicted to be minimal. Theoretical exposure routes to pharmaceuticals that might result in exposure of the conceptus greater than that of maternal systemic exposures include direct access through the cervical canal, adsorption to sperm for carriage into the oocyte, and direct delivery from the vaginal veins or lymphatics to the uterine artery. There is some evidence for direct access to the uterus for progesterone, terbutaline, and danazol, but the evidence does not involve exposures during pregnancy in most instances. Studies in mice, rats, rabbits, and monkeys do not suggest that exposure to small molecule pharmaceuticals in semen imposes risks to the conceptus beyond those that can be predicted using modeling of systemic maternal exposure. Monoclonal antibody and peptide exposure in semen does not pose a significant risk to the conceptus.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Embrión de Mamíferos/metabolismo , Feto/metabolismo , Péptidos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Semen/metabolismo , Vagina/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/toxicidad , Transporte Biológico , Embrión de Mamíferos/efectos de los fármacos , Femenino , Feto/efectos de los fármacos , Haplorrinos , Humanos , Masculino , Exposición Materna , Ratones , Modelos Animales , Modelos Biológicos , Exposición Paterna , Péptidos/química , Péptidos/toxicidad , Permeabilidad , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Conejos , Medición de Riesgo , Absorción Vaginal
5.
Reprod Toxicol ; 58: 213-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26545974

RESUMEN

Small molecule pharmaceutical products are assumed to reach concentrations in semen similar to those in blood plasma. Exposure modeling for these small-molecule products in humans assumes a daily dose of 5mL of semen and 100% absorption from the vagina with distribution to the conceptus through the maternal systemic circulation. Monoclonal antibody drugs are present in semen at concentrations about 2% or less of those in blood, and the modeling used for small molecules will over-estimate the possibility of conceptus exposure to immunoglobulins. It is not known whether peptide products reach semen, but in general peptide medications are destroyed by vaginal peptidases, and conceptus exposure is predicted to be minimal. Theoretical exposure routes to pharmaceuticals that might result in exposure of the conceptus greater than that of maternal systemic exposures include direct access through the cervical canal, adsorption to sperm for carriage into the oocyte, and direct delivery from the vaginal veins or lymphatics to the uterine artery. There is some evidence for direct access to the uterus for progesterone, terbutaline, and danazol, but the evidence does not involve exposures during pregnancy in most instances. Studies in mice, rats, rabbits, and monkeys do not suggest that exposure to small molecule pharmaceuticals in semen imposes risks to the conceptus beyond those that can be predicted using modeling of systemic maternal exposure. Monoclonal antibody and peptide exposure in semen does not pose a significant risk to the conceptus.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Cuello del Útero/metabolismo , Embrión de Mamíferos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteínas/metabolismo , Semen/metabolismo , Vagina/metabolismo , Animales , Anticuerpos Monoclonales/efectos adversos , Transporte Biológico , Cuello del Útero/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Femenino , Humanos , Masculino , Modelos Biológicos , Embarazo , Proteínas/efectos adversos , Medición de Riesgo , Factores de Riesgo , Especificidad de la Especie , Vagina/efectos de los fármacos
6.
Birth Defects Res B Dev Reprod Toxicol ; 101(6): 423-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25475026

RESUMEN

Validation of alternative assays requires comparison of the responses to toxicants in the alternative assay with in vivo responses. Chemicals have been classified as "positive" or "negative" in vivo, despite the fact that developmental toxicity is conditional on magnitude of exposure. We developed a list of positive and negative developmental exposures, with exposure defined by toxicokinetic data, specifically maternal plasma Cmax . We selected a series of 20 chemicals that caused developmental toxicity and for which there were appropriate toxicokinetic data. Where possible, we used the same chemical for both positive and negative exposures, the positive being the Cmax at a dose level that produced significant teratogenicity or embryolethality, the negative being the Cmax at a dose level not causing developmental toxicity. It was not possible to find toxicokinetic data at the no-effect level for all positive compounds, and the negative exposure list contains Cmax values for some compounds that do not have developmental toxicity up to the highest dose level tested. This exposure-based reference list represents a fundamentally different approach to the evaluation of alternative tests and is proposed as a step toward application of alternative tests in quantitative risk assessment.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Teratogénesis/efectos de los fármacos , Teratógenos/toxicidad , Pruebas de Toxicidad , Bioensayo , Ensayos Analíticos de Alto Rendimiento , Técnicas In Vitro , Medición de Riesgo
7.
Reprod Toxicol ; 48: 138-47, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24887033

RESUMEN

A ß-actin-luc transgenic mouse model was used to evaluate whether embryo-fetal exposure could occur after intravaginal administration of a compound. A bioluminescent substrate, d-luciferin, was delivered intravaginally to mimic compound exposure to the female reproductive track and the embryo-fetus. Bioluminescence was observed throughout the reproductive tract during diestrus, but not during estrus, 2-5min after intravaginal d-luciferin administration to female ß-actin-luc mice. Intravaginal administration of d-luciferin to wild-type females mated with male ß-actin-luc mice indicated that the substrate reached the developing embryo-fetus, with bioluminescence corresponding to transgene expression in the embryo-fetus. d-Luciferin substrate rapidly reached the embryo-fetus regardless of the administration route (intravaginal, intraperitoneal, subcutaneous, or intravenous). Vaginal ligation appeared to block at least some direct exposure to the embryo-fetus, but did not prevent d-luciferin from eventually reaching the embryo-fetus. Additional work will be necessary to form the basis for a reliable assessment of the human risk for male-mediated teratogenicity.


Asunto(s)
Benzotiazoles/administración & dosificación , Benzotiazoles/farmacocinética , Embrión de Mamíferos/metabolismo , Feto/metabolismo , Administración Intravaginal , Animales , Ciclo Estral , Femenino , Luciferasas/genética , Luminiscencia , Masculino , Ratones Transgénicos , Imagen Óptica , Embarazo
9.
ALTEX ; 30(3): 353-77, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861079

RESUMEN

To address the pressing need for better in vitro testicular toxicity models, a workshop sponsored by the International Life Sciences Institute (ILSI), the Health and Environmental Science Institute (HESI), and the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), was held at the Mt. Washington Conference Center in Baltimore, MD, USA on October 26-27, 2011. At this workshop, experts in testis physiology, toxicology, and tissue engineering discussed approaches for creating improved in vitro environments that would be more conducive to maintaining spermatogenesis and steroidogenesis and could provide more predictive models for testicular toxicity testing. This workshop report is intended to provide scientists with a broad overview of relevant testicular toxicity literature and to suggest opportunities where bioengineering principles and techniques could be used to build improved in vitro testicular models for safety evaluation. Tissue engineering techniques could, conceivably, be immediately implemented to improve existing models. However, it is likely that in vitro testis models that use single or multiple cell types will be needed to address such endpoints as accurate prediction of chemically induced testicular toxicity in humans, elucidation of mechanisms of toxicity, and identification of possible biomarkers of testicular toxicity.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Contaminantes Ambientales/toxicidad , Testículo/efectos de los fármacos , Alternativas a las Pruebas en Animales , Animales , Biomarcadores , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos , Masculino , Modelos Biológicos , Valor Predictivo de las Pruebas , Testículo/citología , Pruebas de Toxicidad/métodos
10.
Artículo en Inglés | MEDLINE | ID: mdl-21312321

RESUMEN

Workshops on maternal toxicity were held at the annual Society of Toxicology, Teratology Society, and European Teratology Society meetings in 2009. Speakers presented background information prior to a general discussion on this topic. The following recommendations/options are based on the outcome of the discussions at the workshops: 1. A comprehensive evaluation of all available data from general toxicity studies, range-finding Developmental and Reproductive Toxicology (DART) studies, class effects, structure-activity relationships, exposure studies, etc. is essential for appropriate dose selection for definitive DART studies. The intent is to avoid marked maternal toxicity leading to mortality or decreased body weight gains of greater than 20% for prolonged periods. (a) Evaluate alternative endpoints for dose selection and data interpretation (e.g., target tissue effects and pharmacology) for biotherapeutics. (B) Evaluate additional maternal parameters based on effects and/or target organs observed in short-term (e.g., 2- or 4-week) general toxicity studies. 2. Evaluate all available data to determine a cause-effect relationship for developmental toxicity. (a) Conduct a pair-feeding/pair-watering study as a follow-up. (b) Evaluate individual data demonstrating maternal toxicity in the mother with adverse embryo-fetal outcomes in the litter associated with the affected mother. (c) Conduct single-dose studies at increasing doses as a complement to conventional embryo-fetal toxicity studies for certain classes of compounds that affect the hERG channel. 3. Support statements that embryo-fetal effects are caused by maternal toxicity and/or exaggerated pharmacology, especially for malformations. (a) Provide mechanistic or other supporting data. (b) Establish the relevance of the DART findings in animals for human exposures. Birth Defects Res (Part B) 92:36-51, 2010. © 2011 Wiley-Liss, Inc.


Asunto(s)
Exposición Materna , Proyectos de Investigación , Estadística como Asunto , Pruebas de Toxicidad/métodos , Animales , Peso Corporal , Desarrollo Embrionario , Femenino , Feto/patología , Humanos , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Conejos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA