Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Ther (Weinh) ; 3(8)2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33072859

RESUMEN

Herein, we report a nano-MOF conjugated to maltotriose as a new DDS. MA-PCN-224-0.1Mn/0.9Zn showed its ability to target cancer and TAM. This novel MOF is an effective PDT agent and shows little dark toxicity, MA-PCN-224-0.1Mn/0.9Zn uptakes selectively into cancer cells. A well-suited size control methodology was used so that the nano-scaled MOFs may take advantage of the EPR effect. This development of a nano-scale MOF for PDT that is conjugated to a cancer targeting ligand represents a meaningful development for the use of MOFs as drug delivery systems.

2.
Nucl Med Biol ; 86-87: 20-29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32447069

RESUMEN

INTRODUCTION: Glucose has been deemed the driving force of tumor growth for decades. However, research has shown that several tumors metabolically shift towards glutaminolysis. The development of radiolabeled glutamine derivatives could be a useful molecular imaging tool for visualizing these tumors. We elaborated on the glutamine-derived PET tracers by developing two novel probes, namely [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine. MATERIALS AND METHODS: Both tracers were labelled with fluorine-18 using our recently reported ruthenium-based direct aromatic fluorination method. Their affinity was evaluated with a [3H]glutamine inhibition experiment in a human PC-3 and a rat F98 cell line. The imaging potential of [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine was tested using a mouse PC-3 and a rat F98 tumor model. RESULTS: The radiosynthesis of both tracers was successful with overall non-decay corrected yields of 18.46 ± 4.18% (n = 10) ([18F]fluorophenylglutamine) and 8.05 ± 3.25% (n = 5) ([18F]fluorobiphenylglutamine). In vitro inhibition experiments showed a moderate and low affinity of fluorophenylglutamine and fluorobiphenylglutamine, respectively, towards the human ASCT-2 transporter. Both compounds had a low affinity towards the rat ASCT-2 transporter. These results were endorsed by the in vivo experiments with low uptake of both tracers in the F98 rat xenograft, low uptake of [18F]FBPG in the mice PC-3 xenograft and a moderate uptake of [18F]FPG in the PC-3 tumors. CONCLUSION: We investigated the imaging potential of two novel PET radiotracers [18F]FPG and [18F]FBPG. [18F]FPG is the first example of a glutamine radiotracer derivatized with a phenyl group which enables the exploration of further derivatization of the phenyl group to increase the affinity and imaging qualities. We hypothesize that increasing the affinity of [18F]FPG by optimizing the substituents of the arene ring can result in a high-quality glutamine-based PET radiotracer. Advances in Knowledge and Implications for patient care: We hereby report novel glutamine-based PET-tracers. These tracers are tagged on the arene group with fluorine-18, hereby preventing in vivo defluorination, which can occur with alkyl labelled tracers (e.g. (2S,4R)4-[18F]fluoroglutamine). [18F]FPG shows clear tumor uptake in vivo, has no in vivo defluorination and has a straightforward production. We believe this tracer is a good starting point for the development of a high-quality tracer which is useful for the clinical visualization of the glutamine transport.


Asunto(s)
Glutamina/síntesis química , Tomografía de Emisión de Positrones , Animales , Transformación Celular Neoplásica , Radioisótopos de Flúor/química , Glutamina/química , Glutamina/farmacocinética , Humanos , Modelos Moleculares , Conformación Molecular , Células PC-3 , Trazadores Radiactivos , Radioquímica , Ratas , Distribución Tisular
3.
Biotechnol Prog ; 36(3): e2956, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31895491

RESUMEN

Although peptide-enabled synthesis of nanostructures has garnered considerable interest for use in catalytic applications, it has so far been achieved mostly via Fmoc based solid phase peptide synthesis. Consequently, the potential of longer peptides in nanoparticle synthesis have not been explored largely due to the complexities and economic constraints of this chemical synthesis route. This study examines the potential of a 45-amino acid long peptide expressed as fusion to green fluorescence protein (GFPuv) in Escherichia coli for use in palladium nanoparticle synthesis. Fed-batch fermentation with E. coli harboring an arabinose-inducible plasmid produced a product containing three copies of Pd4 peptide fused to N-terminus of GFPuv ((Pd4)3 -GFPuv). Using the intrinsic fluorescence of GFPuv, expression and enrichment of the fusion product was easily monitored. Crude lysate, desalted lysate, and an ion-exchange enriched fraction containing (Pd4)3 -GFPuv were used to test the hypothesis that high purity of the biologic material used as the nanoparticle synthesis template may not be necessary. Nanoparticles were characterized using a variety of material science techniques and used to catalyze a model Suzuki-Miyaura coupling reaction. Results demonstrated that palladium nanoparticles can be synthesized using the soluble cell extract containing (Pd4)3 -GFPuv without extensive purification or cleavage steps, and as a catalyst the crude mixture is functional.


Asunto(s)
Nanopartículas del Metal/química , Biosíntesis de Péptidos/genética , Péptidos/química , Proteínas Recombinantes de Fusión/biosíntesis , Catálisis , Escherichia coli/genética , Proteínas Fluorescentes Verdes , Nanoestructuras/química , Paladio/química , Péptidos/genética , Plásmidos/química , Plásmidos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
4.
J Chem Educ ; 97(4): 1109-1116, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-34113047

RESUMEN

The chemistry of metal-organic frameworks (MOFs), a new class of emerging crystalline porous solids with three-dimensional (3D) networks composed of metals and multidentate organic molecules, was introduced by using three differently-shaped crystals. We reported new and mild MOF synthesis methods that are simple and devised to be performed in high school or primarily undergraduate school settings. MOF applications were demonstrated by use of our synthesized MOFs in the capture of iodine as a potentially hazardous molecule from solution and as a drug delivery system. These applications can be visually confirmed in minutes. Students can gain knowledge on advanced topics, such as drug delivery systems, through these easy-to-prepare MOFs. Furthermore, students can gain an understanding of powder X-ray analysis and ultraviolet-visible near-infrared spectroscopy. This laboratory experience is practical, including synthesis and application of MOFs. The entire experiment has also been recorded as an educational video posted on YouTube as a free public medium for students to watch and learn. In this article we first report the steps we took to synthesize and analyze the MOFs, followed by a description of a simple demonstration that we verified to effectively exhibit adsorption by MOFs. We conclude with a description of how the laboratory activity and demonstration was implemented in an undergraduate chemistry laboratory.

5.
ACS Appl Nano Mater ; 3(7): 6239-6269, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34327307

RESUMEN

Covalent organic frameworks (COFs) are a rapidly developing class of materials that has been of immense research interest during the last ten years. Numerous reviews have been devoted to summarizing the synthesis and applications of COFs. However, the underlying dynamic covalent chemistry (DCC), which is the foundation of COFs synthesis, has never been systematically reviewed in this context. Dynamic covalent chemistry is the practice of using thermodynamic equilibriums to molecular assemblies. This Critical Review will cover the state-of-the-art use of DCC to both synthesize COFs and expand the applications of COFs. Five synthetic strategies for COF synthesis are rationalized, namely: modulation, mixed linker/linkage, sub-stoichiometric reaction, framework isomerism, and linker exchange, which highlight the dynamic covalent chemistry to regulate the growth and to modify the properties of COFs. Furthermore, the challenges in these approaches and potential future perspectives in the field of COF chemistry are also provided.

6.
J Chem Educ ; 97(8): 2351-2355, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34354299

RESUMEN

Described is the creation, deployment, and evaluation of a video produced about the synthesis and applications of metal-organic frameworks (MOFs). The goal of this project was to gauge the impact of viewing the video on high school students' conceptions of authentic chemistry practices and applications. Additionally, comparisons were made between the use of the video and more traditional face-to-face presentations given by professional scientists. Observations, student surveys, and an interview with the high school chemistry teacher demonstrated the utility of such a video. Specifically, the students who viewed the video reported learning more about the nature of laboratory work in chemistry than other students who did not view the video. Students, regardless of whether they viewed the video or just received a presentation, reported growth in understandings of the applications of chemistry research and porous nanomaterial. Other research chemists are encouraged to consider ways that they could document on video the research that they are performing in order to introduce an untapped audience (high school students) to authentic chemistry research in a practically simple manner. During times of crisis, such as a pandemic, online videos could be a useful tool for high school chemistry teachers to use in collaboration with research faculty, particularly when schools are closed.

7.
Angew Chem Int Ed Engl ; 58(24): 8097-8102, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30989746

RESUMEN

The nature of the processes at the origin of life that selected specific classes of molecules for broad incorporation into cells is controversial. Among those classes selected were polyisoprenoids and their derivatives. This paper tests the hypothesis that polyisoprenoids were early contributors to membranes in part because they (or their derivatives) could facilitate charge transport by quantum tunneling. It measures charge transport across self-assembled monolayers (SAMs) of carboxyl-terminated monoterpenoids (O2 C(C9 HX)) and alkanoates (O2 C(C7 HX)) with different degrees of unsaturation, supported on silver (AgTS ) bottom electrodes, with Ga2 O3 /EGaIn top electrodes. Measurements of current density of SAMs of linear length-matched hydrocarbons-both saturated and unsaturated-show that completely unsaturated molecules transport charge faster than those that are completely saturated by approximately a factor of ten. This increase in relative rates of charge transport correlates with the number of carbon-carbon double bonds, but not with the extent of conjugation. These results suggest that polyisoprenoids-even fully unsaturated-are not sufficiently good tunneling conductors for their conductivity to have favored them as building blocks in the prebiotic world.


Asunto(s)
Monoterpenos/química , Compuestos de Sulfhidrilo/química
8.
Chempluschem ; 84(10): 1525-1535, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31943935

RESUMEN

A series of Pt(II) complexes trans-[Pt(PPh2 allyl)2 (κ1 -S-SR)2 ], 1, PPh2 allyl=allyldiphenylphosphine, SR=pyridine-2-thiol (Spy, 1 a), 5-(trifluoromethyl)-pyridine-2-thiol (SpyCF3 -5, 1 b), pyrimidine-2-thiol (SpyN, 1 c), benzothiazole-2-thiol (Sbt, 1 d), benzimidazole-2-thiol (Sbi, 1 e), were synthesized. They were characterized by NMR, HR ESI-MS, and X-ray crystallography. Treatment of human cancer cell lines (A549, SKOV3, MCF-7) with these complexes resulted in promising antitumor effects in comparison with cisplatin. These compounds showed suitable selectivity between tumorigenic and non-tumorigenic (MCF-10 A) cell lines. Analyses of cell cycle progression and apoptosis were conducted for 1 a, the most cytotoxic compound, to screen dose/time response and to study the antiproliferative mechanism. An electrophoresis mobility shift assay was performed to assess the direct interaction of 1 a with DNA and the strong genotoxic ability was indicated through the comet assay method.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Compuestos Organoplatinos/química , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , ADN/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Compuestos Organoplatinos/síntesis química , Platino (Metal)/química , Piridinas/química , Pirimidinas/química , Compuestos de Sulfhidrilo/química
9.
RSC Adv ; 8(66): 37835-37840, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-35558628

RESUMEN

The combination of continuous flow technology with immobilizing of only 0.13 mol% of triflic acid (TfOH) on silica-encapsulated superparamagnetic iron oxide nanoparticles (SPIONs) under solvent-free conditions successfully provided a powerful, efficient, and eco-friendly route for the synthesis of plasticizers. The turnover frequency value in micro-flow conditions varied in the range of 948.7 to 7384.6 h-1 compared to 403.8 to 3099 h-1 for in-flask. This technique works efficiently, encouraging future applications of micro-flow nano-catalysis in green chemistry.

10.
ACS Cent Sci ; 3(9): 944-948, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28979935

RESUMEN

The deficiency of robust and practical methods for 18F-radiofluorination is a bottleneck for positron emission tomography (PET) tracer development. Here, we report the first transition-metal-assisted 18F-deoxyfluorination of phenols. The transformation benefits from readily available phenols as starting materials, tolerance of moisture and ambient atmosphere, large substrate scope, and translatability to generate doses appropriate for PET imaging.

11.
Chempluschem ; 81(8): 708-713, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31968834

RESUMEN

A functional metal-organic framework (MOF) composed of robust porphyrinic material (RPM) based on the pillared-paddlewheel topology is prepared with large 3 D channels, and is used to perform a tandem epoxidation/CO2 insertion reaction. The designated system benefits from two metalloporphyrins: 1) a Mn-porphyrin, which catalyzes the epoxidation of an olefin substrate, and 2) a Zn-porphyrin, which catalyzes the epoxide opening. By using an automated liquid-phase epitaxial growth system, the RPM-MOF is also prepared in layer-by-layer fashion as an ultrathin film on a self-assembled-monolayer-coated silicon platform. Deployed as a tandem catalyst, the film version yields a substantially higher catalytic turnover number for tandem methoxy-styrene epoxidation followed by CO2 insertion than the bulk crystalline MOF samples.

12.
Chem Sci ; 6(4): 2286-2291, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29308142

RESUMEN

The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However, UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.

13.
Chem Commun (Camb) ; 51(1): 85-8, 2015 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-25325833

RESUMEN

Herein, we demonstrate the robustness of layer-by-layer (LbL)-assembled, pillared-paddlewheel-type MOF films toward conversion to new or modified MOFs via solvent-assisted linker exchange (SALE) and post-assembly linker metalation. Further, we show that LbL synthesis can afford MOFs that have proven inaccessible through other de novo strategies.

14.
Chemistry ; 19(20): 6203-8, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23520154

RESUMEN

Congest and conjugate: The application of a sterically congested dipyrromethane in an acid-catalyzed [2+2+2] building-block approach was studied for the first time, resulting in the formation of two stable calix[6]phyrin(1.1.1.1.1.1) diastereomers (see scheme). The calix[n]phyrins were further functionalized at their pentafluorophenyl residues, allowing the first synthesis of a calix[4]phyrin(1.1.1.1) dimer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA