Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1410564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007148

RESUMEN

Background: Immune checkpoint blockade (ICB) is rapidly becoming a standard of care in the treatment of many cancer types. However, the subset of patients who respond to this type of therapy is limited. Another way to promote antitumoral immunity is the use of immunostimulatory molecules, such as cytokines or T cell co-stimulators. The systemic administration of immunotherapeutics leads to significant immune-related adverse events (irAEs), therefore, the localized antitumoral action is needed. One way to achieve this is intratumoral non-viral gene-immune therapy, which allows for prolonged and localized gene expression, and multiple drug administration. In this study, we combined the previously described non-viral gene delivery system, PEG-PEI-TAT copolymer, PPT, with murine OX40L-encoding plasmid DNA. Methods: The resulting OX40L/PPT nanoparticles were characterized via gel mobility assay, dynamic light scattering analysis and in vitro transfection efficiency evaluation. The antitumoral efficacy of intratumorally (i.t.) administered nanoparticles was estimated using subcutaneously (s.c.) implanted CT26 (colon cancer), B16F0 (melanoma) and 4T1 (breast cancer) tumor models. The dynamics of stromal immune cell populations was analyzed using flow cytometry. Weight loss and cachexia were used as irAE indicators. The effect of combination of i.t. OX40L/PPT with intraperitoneal PD-1 ICB was estimated in s.c. CT26 tumor model. Results: The obtained OX40L/PPT nanoparticles had properties applicable for cell transfection and provided OX40L protein expression in vitro in all three investigated cancer models. We observed that OX40L/PPT treatment successfully inhibited tumor growth in B16F0 and CT26 tumor models and showed a tendency to inhibit 4T1 tumor growth. In B16F0 tumor model, OX40L/PPT treatment led to the increase in antitumoral effector NK and T killer cells and to the decrease in pro-tumoral myeloid cells populations within tumor stroma. No irAE signs were observed in all 3 tumor models, which indicates good treatment tolerability in mice. Combining OX40L/PPT with PD-1 ICB significantly improved treatment efficacy in the CT26 subcutaneous colon cancer model, providing protective immunity against CT26 colon cancer cells. Conclusion: Overall, the anti-tumor efficacy observed with OX40L non-viral gene therapy, whether administered alone or in combination with ICB, highlights its potential to revolutionize cancer gene therapy, thus paving the way for unprecedented advancements in the cancer therapy field.


Asunto(s)
Inmunoterapia , Ligando OX40 , Animales , Ligando OX40/genética , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Femenino , Terapia Genética/métodos , Nanopartículas , Técnicas de Transferencia de Gen , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microambiente Tumoral/inmunología , Polietileneimina/química , Humanos , Melanoma Experimental/terapia , Melanoma Experimental/inmunología , Polietilenglicoles/química
2.
Nanomedicine ; 61: 102768, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38945506

RESUMEN

Nanophotothermolysis (NPhT) effect is considered to be an approach for the development of highly selective modalities for anticancer treatment. Herein, we evaluated an antitumor efficacy of NPhT with intravenously injected zinc phthalocyanine particles (ZnPcPs) in murine subcutaneous syngeneic tumor models. In S37 sarcoma-bearing mice a biodistribution of ZnPcPs was studied and the high antitumor efficacy of ZnPcPs-mediated NPhT was shown, including a response of metastatic lesions. The morphological investigation showed the main role of a local NPhT-induced vascular damage in the tumor growth and tumor spread inhibition. Murine tumors of different histological origin were not equally sensitive to the treatment. The results demonstrate a potential of ZnPcPs-mediated NPhT for treatment of surface tumors.


Asunto(s)
Indoles , Isoindoles , Compuestos Organometálicos , Compuestos de Zinc , Animales , Compuestos de Zinc/química , Indoles/química , Ratones , Compuestos Organometálicos/química , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/farmacología , Línea Celular Tumoral , Nanopartículas/química , Distribución Tisular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Humanos , Femenino
3.
Biomed Pharmacother ; 175: 116668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701565

RESUMEN

The combination of radiation treatment and chemotherapy is currently the standard for management of cancer patients. However, safe doses do not often provide effective therapy, then pre-treated patients are forced to repeat treatment with often already increased tumor resistance to drugs and irradiation. One of the solutions we suggest is to improve primary course of radiation treatment via enhancing radiosensitivity of tumors by magnetic-guided iron oxide nanoparticles (magnetite). We obtained spherical heparinized iron oxide nanoparticles (hIONPs, ∼20 nm), characterized it by TEM, Infrared spectroscopy and DLS. Then hIONPs cytotoxicity was assessed for colon cancer cells (XTT assay) and cellular uptake of nanoparticles was analyzed with X-ray fluorescence. Combination of ionizing radiation (IR) and hIONPs in vitro caused an increase of G2/M arrest of cell cycle, mitotic errors and decrease in survival (compared with samples exposed to IR and hIONPs separately). The promising results were shown for magnetic-guided hIONPs in CT26-grafted BALB/C mice: the combination of intravenously administrated hIONPs and IR showed 20,8% T/C ratio (related to non-treated mice), while single radiation had no shown significant decrease in tumor growth (72,4%). Non-guided by magnets hIONPs with IR showed 57,9% of T/C. This indicates that ultra-small size and biocompatible molecule are not the key to successful nano-drug design, in each case, delivery technologies need to be improved when transferred to in vivo model.


Asunto(s)
Neoplasias del Colon , Heparina , Nanopartículas Magnéticas de Óxido de Hierro , Ratones Endogámicos BALB C , Fármacos Sensibilizantes a Radiaciones , Animales , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/radioterapia , Nanopartículas Magnéticas de Óxido de Hierro/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Humanos , Ratones , Línea Celular Tumoral , Heparina/química , Heparina/farmacología , Nanopartículas de Magnetita/química , Ensayos Antitumor por Modelo de Xenoinjerto , Supervivencia Celular/efectos de los fármacos
4.
Pharmaceutics ; 15(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37896166

RESUMEN

The main concept of radiosensitization is making the tumor tissue more responsive to ionizing radiation, which leads to an increase in the potency of radiation therapy and allows for decreasing radiation dose and the concomitant side effects. Radiosensitization by metal oxide nanoparticles is widely discussed, but the range of mechanisms studied is not sufficiently codified and often does not reflect the ability of nanocarriers to have a specific impact on cells. This review is focused on the magnetic iron oxide nanoparticles while they occupied a special niche among the prospective radiosensitizers due to unique physicochemical characteristics and reactivity. We collected data about the possible molecular mechanisms underlying the radiosensitizing effects of iron oxide nanoparticles (IONPs) and the main approaches to increase their therapeutic efficacy by variable modifications.

5.
Cancers (Basel) ; 14(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35454947

RESUMEN

The involvement of oxylipins, metabolites of polyunsaturated fatty acids, in cancer pathogenesis was known long ago, but only the development of the high-throughput methods get the opportunity to study oxylipins on a system level. The study aimed to elucidate alterations in oxylipin metabolism as characteristics of breast cancer patients. We compared the ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) oxylipin profile signatures in the blood plasma of 152 healthy volunteers (HC) and 169 patients with different stages of breast cancer (BC). To integrate lipidomics, transcriptomics, and genomics data, we analyzed a transcriptome of 10 open database datasets obtained from tissues and blood cells of BC patients and SNP data for 33 genes related to oxylipin metabolism. We identified 18 oxylipins, metabolites of omega-3 or omega-6 polyunsaturated fatty acids, that were differentially expressed between BCvsHC patients, including anandamide, prostaglandins and hydroxydocosahexaenoic acids. DEGs analysis of tissue and blood samples from BC patients revealed that 19 genes for oxylipin biosynthesis change their expression level, with CYP2C19, PTGS2, HPGD, and FAAH included in the list of DEGs in the analysis of transcriptomes and the list of SNPs associated with BC. Results allow us to suppose that oxylipin signatures reflect the organism's level of response to the disease. Our data regarding changes in oxylipins at the system level show that oxylipin profiles can be used to evaluate the early stages of breast cancer.

6.
J Transl Med ; 13: 78, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25880666

RESUMEN

BACKGROUND: Gene-directed enzyme prodrug therapy (GDEPT) represents a technology to improve drug selectivity for cancer cells. It consists of delivery into tumor cells of a suicide gene responsible for in situ conversion of a prodrug into cytotoxic metabolites. Major limitations of GDEPT that hinder its clinical application include inefficient delivery into cancer cells and poor prodrug activation by suicide enzymes. We tried to overcome these constraints through a combination of suicide gene therapy with immunomodulating therapy. Viral vectors dominate in present-day GDEPT clinical trials due to efficient transfection and production of therapeutic genes. However, safety concerns associated with severe immune and inflammatory responses as well as high cost of the production of therapeutic viruses can limit therapeutic use of virus-based therapeutics. We tried to overcome this problem by using a simple nonviral delivery system. METHODS: We studied the antitumor efficacy of a PEI (polyethylenimine)-PEG (polyethylene glycol) copolymer carrying the HSVtk gene combined in one vector with granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA. The system HSVtk-GM-CSF/PEI-PEG was tested in vitro in various mouse and human cell lines, ex vivo and in vivo using mouse models. RESULTS: We showed that the HSVtk-GM-CSF/PEI-PEG system effectively inhibited the growth of transplanted human and mouse tumors, suppressed metastasis and increased animal lifespan. CONCLUSIONS: We demonstrated that appreciable tumor shrinkage and metastasis inhibition could be achieved with a simple and low toxic chemical carrier - a PEI-PEG copolymer. Our data indicate that combined suicide and cytokine gene therapy may provide a powerful approach for the treatment of solid tumors and their metastases.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Neoplasias/terapia , Polímeros/química , Timidina Quinasa/genética , Timidina Quinasa/uso terapéutico , Animales , Cationes , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ganciclovir/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Sitios Internos de Entrada al Ribosoma/genética , Lípidos , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Neoplasias/patología , Polietilenglicoles/química , Polietileneimina/química , Simplexvirus/enzimología
7.
Protein Expr Purif ; 65(1): 100-7, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19174190

RESUMEN

The human iron-binding protein lactoferrin (hLf) has been implicated in a number of important physiological pathways, including those regulating immune function and tumor growth. In an effort to develop an efficient system for production of recombinant hLf (rhLf) that is structurally and functionally equivalent to the natural protein, we generated a recombinant CELO (chicken embryo lethal orphan) avian adenovirus containing an expression cassette for hLf. Embryonated chicken eggs were infected with the generated CELO-Lf virus. rhLf expression was measured in the allantoic fluid of infected eggs by ELISA three days later. The level of recombinant protein was about 0.8mg per embryo. rhLf was efficiently purified (up to 85% yield) from the allantoic fluid of infected eggs using affinity chromatography. rhLf produced in the allantoic fluid was characterized in comparison with natural hLf (nhLf) purified from human breast milk. SDS-PAGE, Western blotting and glycosylation analyzes showed that the recombinant protein had similar physical characteristics to nhLf. In addition, we demonstrated that the antioxidative and antimicrobial activity of rhLf produced in this system is equivalent to that of nhLf. Taken together, these results illustrate the utility of the described "recombinant CELO adenovirus-chicken embryo" system for production of functionally active rhLf. Efficient production of rhLf with accurate structure and function is an important step in furthering investigation of Lf as a potential human drug.


Asunto(s)
Aviadenovirus , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , Expresión Génica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Alantoides , Animales , Proteínas Portadoras/aislamiento & purificación , Embrión de Pollo , Humanos , Lactoferrina , Proteínas Recombinantes/aislamiento & purificación , Cigoto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...