Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 211(12): 1868-1876, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37909834

RESUMEN

Isolation of placental macrophages using enzymatic digestion at warm temperatures is widely used for in vitro studies. However, studies in brain and kidney tissue show that this method activates immune cells, immediate early genes, and heat shock proteins. Isolating placental macrophages while preserving their tissue-specific characteristics as much as possible is pivotal to reliably studying their functions. We therefore developed a mechanical dissociation protocol at low temperatures and compared this to enzymatic digestion at high temperatures. Decidual and villous macrophages were isolated from term human placentas. A cell suspension was generated by mechanical dissociation using a gentleMACS. For warm enzymatic digestion, Accutase was added, followed by incubation at 37°C. Macrophages were isolated after Ficoll density gradient centrifugation. Cell types were analyzed with flow cytometry (CD45, CD14, CD80, CD86, CD163, and CD206) and their activation status with real-time PCR (FOS, JUN, HSP27, HSP70, IL1ß, TNFα, IL10, and TGFß) after cell sorting. A higher proportion of leukocytes and macrophages was obtained from the villi with cold mechanical dissociation (p < 0.05). Compared to warm enzymatic digestion, cold mechanical dissociation resulted in a higher expression of CD163 in villous and decidual macrophages (p < 0.05). Warm enzymatic digestion showed higher levels of TNFα, IL1ß, and IL10 in decidual and villous macrophages, and HSP70 in villous macrophages. Our data show that mechanical dissociation of placental tissue at low temperatures is associated with less activation of placental macrophages. This suggests that cold mechanical dissociation is a preferred method, resulting in macrophages that more closely resemble their in-tissue state.


Asunto(s)
Placenta , Factor de Necrosis Tumoral alfa , Embarazo , Femenino , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Citometría de Flujo
2.
Placenta ; 129: 104-110, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36283342

RESUMEN

INTRODUCTION: Placental pathology and pregnancy complications are associated with unfavorable regulation of the maternal immune system. Although much research has been performed towards the role of immune cells like macrophages and T cells in this context, little is known about the presence and function of mast cells (MC). MC can be sub classified in tryptase-positive (MCT) and tryptase- and chymase-positive (MCTC). This study investigates the presence of MC in the decidua of pregnancies complicated by fetal growth restriction (FGR) and stillbirth (SB). METHODS: Placental tissue from FGR (n = 250), SB (n = 64) and healthy pregnancies (n = 42) was included. Histopathological lesions were classified according to the Amsterdam Placental Workshop Group criteria. Tissue sections were stained for tryptase and chymase. Decidual MC were counted manually, and the results were expressed as number of cells/mm2 decidual tissue. RESULTS: A significant lower median number of MCTC was found in the decidua of FGR (0.40 per mm2; p < 0.001) and SB (0.51 per mm2; p < 0.05) compared to healthy controls (1.04 per mm2). No difference in MCT number (1.19 per mm2, 1.88 per mm2 and 1.37 per mm2 respectively) was seen between the groups. There was no difference in number of MCT and MCTC between placental pathological lesions. DISCUSSION: Our findings suggest a shift in decidual MC balance towards MCT in pregnancy complications. No difference in numbers of MC subtypes was found to be related to histopathologic lesions.


Asunto(s)
Retardo del Crecimiento Fetal , Mastocitos , Femenino , Humanos , Embarazo , Quimasas , Triptasas , Mastocitos/patología , Retardo del Crecimiento Fetal/patología , Mortinato , Placenta
3.
Front Immunol ; 11: 1898, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973787

RESUMEN

Immune cells are critically involved in placental development and functioning, and inadequate regulation of the maternal immune system is associated with placental pathology and pregnancy complications. This study aimed to explore numbers of decidual immune cells in pregnancies complicated with fetal growth restriction (FGR) and stillbirth (SB), and in placentas with histopathological lesions: maternal vascular malperfusion (MVM), fetal vascular malperfusion (FVM), delayed villous maturation (DVM), chorioamnionitis (CA), and villitis of unknown etiology (VUE). Placental tissue from FGR (n = 250), SB (n = 64), and healthy pregnancies (n = 42) was included. Histopathological lesions were classified according to criteria developed by the Amsterdam Placental Workshop Group. Tissue slides were stained for CD68 (macrophages), CD206 (M2-like macrophages), CD3 (T cells), FOXP3 [regulatory T (Treg) cells], and CD56 [natural killer (NK) cells]. Cell numbers were analyzed in the decidua basalis using computerized morphometry. The Mann-Whitney U-test and Kruskal Wallis test with the Dunn's as post-hoc test were used for statistical analysis. Numbers of CD68+ macrophages were higher in FGR compared to healthy pregnancies (p < 0.001), accompanied by lower CD206+/CD68+ ratios (p < 0.01). In addition, in FGR higher numbers of FOXP3+ Treg cells were seen (p < 0.01) with elevated FOXP3+/CD3+ ratios (p < 0.01). Similarly, in SB elevated FOXP3+ Treg cells were found (p < 0.05) with a higher FOXP3+/CD3+ ratio (p < 0.01). Furthermore, a trend toward higher numbers of CD68+ macrophages was found (p < 0.1) in SB. Numbers of CD3+ and FOXP3+ cells were higher in placentas with VUE compared to placentas without lesions (p < 0.01 and p < 0.001), accompanied by higher FOXP3+/CD3+ ratios (p < 0.01). Elevated numbers of macrophages with a lower M2/total macrophage ratio in FGR suggest a role for a macrophage surplus in its pathogenesis and could specifically indicate involvement of inflammatory macrophages. Higher numbers of FOXP3+ Treg cells with higher Treg/total T cell ratios in VUE may be associated with impaired maternal-fetal tolerance and a compensatory response of Treg cells. The abundant presence of placental lesions in the FGR and SB cohorts might explain the increase of Treg/total T cell ratios in these groups. More functionality studies of the observed altered immune cell subsets are needed.


Asunto(s)
Decidua/inmunología , Retardo del Crecimiento Fetal/inmunología , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Placenta/inmunología , Mortinato , Linfocitos T Reguladores/inmunología , Adulto , Biomarcadores/análisis , Estudios de Casos y Controles , Femenino , Retardo del Crecimiento Fetal/patología , Histocompatibilidad Materno-Fetal , Humanos , Inmunohistoquímica , Inmunofenotipificación , Masculino , Fenotipo , Placenta/patología , Embarazo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...