Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 35(10): 1830-1843.e5, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37611583

RESUMEN

Stable isotopes are powerful tools to assess metabolism. 13C labeling is detected using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS). MS has excellent sensitivity but generally cannot discriminate among different 13C positions (isotopomers), whereas NMR is less sensitive but reports some isotopomers. Here, we develop an MS method that reports all 16 aspartate and 32 glutamate isotopomers while requiring less than 1% of the sample used for NMR. This method discriminates between pathways that result in the same number of 13C labels in aspartate and glutamate, providing enhanced specificity over conventional MS. We demonstrate regional metabolic heterogeneity within human tumors, document the impact of fumarate hydratase (FH) deficiency in human renal cancers, and investigate the contributions of tricarboxylic acid (TCA) cycle turnover and CO2 recycling to isotope labeling in vivo. This method can accompany NMR or standard MS to provide outstanding sensitivity in isotope-labeling experiments, particularly in vivo.


Asunto(s)
Ácido Aspártico , Ácido Glutámico , Humanos , Isótopos de Carbono , Ciclo del Ácido Cítrico , Espectrometría de Masas
2.
Nat Metab ; 5(9): 1563-1577, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653041

RESUMEN

In the tumor microenvironment, adipocytes function as an alternate fuel source for cancer cells. However, whether adipocytes influence macromolecular biosynthesis in cancer cells is unknown. Here we systematically characterized the bidirectional interaction between primary human adipocytes and ovarian cancer (OvCa) cells using multi-platform metabolomics, imaging mass spectrometry, isotope tracing and gene expression analysis. We report that, in OvCa cells co-cultured with adipocytes and in metastatic tumors, a part of the glucose from glycolysis is utilized for the biosynthesis of glycerol-3-phosphate (G3P). Normoxic HIF1α protein regulates the altered flow of glucose-derived carbons in cancer cells, resulting in increased glycerophospholipids and triacylglycerol synthesis. The knockdown of HIF1α or G3P acyltransferase 3 (a regulatory enzyme of glycerophospholipid synthesis) reduced metastasis in xenograft models of OvCa. In summary, we show that, in an adipose-rich tumor microenvironment, cancer cells generate G3P as a precursor for critical membrane and signaling components, thereby promoting metastasis. Targeting biosynthetic processes specific to adipose-rich tumor microenvironments might be an effective strategy against metastasis.


Asunto(s)
Glicerol , Neoplasias Ováricas , Humanos , Femenino , Adipocitos , Glucosa , Fosfatos , Microambiente Tumoral
3.
J Clin Invest ; 133(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259915

RESUMEN

Fumarate hydratase-deficient (FH-deficient) renal cell carcinoma (RCC) represents a particularly aggressive form of kidney cancer. FH-deficient RCC arises in the setting of germline, or solely somatic, mutations in the FH gene, a two-hit tumor suppressor gene. Early detection can be curative, but there are no biomarkers, and in the sporadic setting, establishing a diagnosis of FH-deficient RCC is challenging. In this issue of the JCI, Zheng, Zhu, and co-authors report untargeted plasma metabolomic analyses to identify putative biomarkers. They discovered two plasma metabolites directly linked to fumarate overproduction by tumor cells, succinyl-adenosine and succinic-cysteine, which correlate with tumor burden. The identification of circulating biomarkers of FH-deficient RCC may aid in the diagnosis of FH-deficient RCC and provide a means for longitudinal follow-up.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Fumarato Hidratasa/genética , Inmunohistoquímica , Neoplasias Renales/genética , Neoplasias Renales/patología , Biomarcadores de Tumor/genética
4.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214913

RESUMEN

Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.

5.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798172

RESUMEN

Most kidney cancers display evidence of metabolic dysfunction1-4 but how this relates to cancer progression in humans is unknown. We used a multidisciplinary approach to infuse 13C-labeled nutrients during surgical tumour resection in over 70 patients with kidney cancer. Labeling from [U-13C]glucose varies across cancer subtypes, indicating that the kidney environment alone cannot account for all metabolic reprogramming in these tumours. Compared to the adjacent kidney, clear cell renal cell carcinomas (ccRCC) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in organotypic slices cultured ex vivo, indicating that suppressed labeling is tissue intrinsic. Infusions of [1,2-13C]acetate and [U-13C]glutamine in patients, coupled with respiratory flux of mitochondria isolated from kidney and tumour tissue, reveal primary defects in mitochondrial function in human ccRCC. However, ccRCC metastases unexpectedly have enhanced labeling of TCA cycle intermediates compared to primary ccRCCs, indicating a divergent metabolic program during ccRCC metastasis in patients. In mice, stimulating respiration in ccRCC cells is sufficient to promote metastatic colonization. Altogether, these findings indicate that metabolic properties evolve during human kidney cancer progression, and suggest that mitochondrial respiration may be limiting for ccRCC metastasis but not for ccRCC growth at the site of origin.

6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110412

RESUMEN

The pentose phosphate pathway is a major source of NADPH for oxidative stress resistance in cancer cells but there is limited insight into its role in metastasis, when some cancer cells experience high levels of oxidative stress. To address this, we mutated the substrate binding site of glucose 6-phosphate dehydrogenase (G6PD), which catalyzes the first step of the pentose phosphate pathway, in patient-derived melanomas. G6PD mutant melanomas had significantly decreased G6PD enzymatic activity and depletion of intermediates in the oxidative pentose phosphate pathway. Reduced G6PD function had little effect on the formation of primary subcutaneous tumors, but when these tumors spontaneously metastasized, the frequency of circulating melanoma cells in the blood and metastatic disease burden were significantly reduced. G6PD mutant melanomas exhibited increased levels of reactive oxygen species, decreased NADPH levels, and depleted glutathione as compared to control melanomas. G6PD mutant melanomas compensated for this increase in oxidative stress by increasing malic enzyme activity and glutamine consumption. This generated a new metabolic vulnerability as G6PD mutant melanomas were more dependent upon glutaminase than control melanomas, both for oxidative stress management and anaplerosis. The oxidative pentose phosphate pathway, malic enzyme, and glutaminolysis thus confer layered protection against oxidative stress during metastasis.


Asunto(s)
Glucosafosfato Deshidrogenasa/metabolismo , Glutamina/metabolismo , Melanoma/metabolismo , Estrés Oxidativo/fisiología , Animales , Humanos , Ratones , Ratones Endogámicos NOD , NADP/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato/fisiología , Especies Reactivas de Oxígeno/metabolismo
7.
Nat Cancer ; 2(4): 414-428, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34179825

RESUMEN

Brain metastases are refractory to therapies that control systemic disease in patients with human epidermal growth factor receptor 2 (HER2+) breast cancer, and the brain microenvironment contributes to this therapy resistance. Nutrient availability can vary across tissues, therefore metabolic adaptations required for brain metastatic breast cancer growth may introduce liabilities that can be exploited for therapy. Here, we assessed how metabolism differs between breast tumors in brain versus extracranial sites and found that fatty acid synthesis is elevated in breast tumors growing in brain. We determine that this phenotype is an adaptation to decreased lipid availability in brain relative to other tissues, resulting in a site-specific dependency on fatty acid synthesis for breast tumors growing at this site. Genetic or pharmacological inhibition of fatty acid synthase (FASN) reduces HER2+ breast tumor growth in the brain, demonstrating that differences in nutrient availability across metastatic sites can result in targetable metabolic dependencies.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Ácido Graso Sintasas/genética , Ácidos Grasos/uso terapéutico , Femenino , Humanos , Microambiente Tumoral
8.
Nat Metab ; 3(4): 571-585, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33833463

RESUMEN

Nicotinamide adenine dinucleotide phosphate (NADP+) is vital to produce NADPH, a principal supplier of reducing power for biosynthesis of macromolecules and protection against oxidative stress. NADPH exists in separate pools, in both the cytosol and mitochondria; however, the cellular functions of mitochondrial NADPH are incompletely described. Here, we find that decreasing mitochondrial NADP(H) levels through depletion of NAD kinase 2 (NADK2), an enzyme responsible for production of mitochondrial NADP+, renders cells uniquely proline auxotrophic. Cells with NADK2 deletion fail to synthesize proline, due to mitochondrial NADPH deficiency. We uncover the requirement of mitochondrial NADPH and NADK2 activity for the generation of the pyrroline-5-carboxylate metabolite intermediate as the bottleneck step in the proline biosynthesis pathway. Notably, after NADK2 deletion, proline is required to support nucleotide and protein synthesis, making proline essential for the growth and proliferation of NADK2-deficient cells. Thus, we highlight proline auxotrophy in mammalian cells and discover that mitochondrial NADPH is essential to enable proline biosynthesis.


Asunto(s)
Proliferación Celular , Mitocondrias/metabolismo , NADP/metabolismo , Prolina/biosíntesis , Animales , Ciclo Celular/genética , Humanos , Ratones , Ratones Noqueados , Consumo de Oxígeno , Páncreas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cell Rep ; 28(9): 2293-2305.e9, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461647

RESUMEN

We screen ion channels and transporters throughout the genome to identify those required by human melanoma cells but not by normal human melanocytes. We discover that Mucolipin-1 (MCOLN1), which encodes the lysosomal cation channel TRPML1, is preferentially required for the survival and proliferation of melanoma cells. Loss of MCOLN1/TRPML1 function impairs the growth of patient-derived melanomas in culture and in xenografts but does not affect the growth of human melanocytes. TRPML1 expression and macropinocytosis are elevated in melanoma cells relative to melanocytes. TRPML1 is required in melanoma cells to negatively regulate MAPK pathway and mTORC1 signaling. TRPML1-deficient melanoma cells exhibit decreased survival, proliferation, tumor growth, and macropinocytosis, as well as serine depletion and proteotoxic stress. All of these phenotypes are partially or completely rescued by mTORC1 inhibition. Melanoma cells thus increase TRPML1 expression relative to melanocytes to attenuate MAPK and mTORC1 signaling, to sustain macropinocytosis, and to avoid proteotoxic stress.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Melanoma/metabolismo , Proteostasis , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Masculino , Melanoma/genética , Melanoma/patología , Ratones , Fenotipo , Pinocitosis , Canales de Potencial de Receptor Transitorio/genética , Células Tumorales Cultivadas
11.
Nature ; 569(7756): E4, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31043737

RESUMEN

Further analysis has revealed that the signal reported in Extended Data Fig. 1c of this Letter is attributed to phosphorylethanolamine, not carbamoyl phosphate. A newly developed derivatization method revealed that the level of carbamoyl phosphate in these NSCLC extracts is below the detection threshold of approximately 10 nanomoles. These findings do not alter the overall conclusions of the Letter; see associated Amendment for full details. The Letter has not been corrected online.

12.
Cell Metab ; 28(5): 793-800.e2, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30146487

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common form of human kidney cancer. Histological and molecular analyses suggest that ccRCCs have significantly altered metabolism. Recent human studies of lung cancer and intracranial malignancies demonstrated an unexpected preservation of carbohydrate oxidation in the tricarboxylic acid (TCA) cycle. To test the capacity of ccRCC to oxidize substrates in the TCA cycle, we infused 13C-labeled fuels in ccRCC patients and compared labeling patterns in tumors and adjacent kidney. After infusion with [U-13C]glucose, ccRCCs displayed enhanced glycolytic intermediate labeling, suppressed pyruvate dehydrogenase flow, and reduced TCA cycle labeling, consistent with the Warburg effect. Comparing 13C labeling among ccRCC, brain, and lung tumors revealed striking differences. Primary ccRCC tumors demonstrated the highest enrichment in glycolytic intermediates and lowest enrichment in TCA cycle intermediates. Among human tumors analyzed by intraoperative 13C infusions, ccRCC is the first to demonstrate a convincing shift toward glycolytic metabolism.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Glucosa/metabolismo , Neoplasias Renales/metabolismo , Adulto , Anciano , Isótopos de Carbono/metabolismo , Carcinoma de Células Renales/patología , Ciclo del Ácido Cítrico , Glucólisis , Humanos , Riñón/metabolismo , Riñón/patología , Neoplasias Renales/patología , Persona de Mediana Edad , Oxidación-Reducción
13.
Sci Transl Med ; 9(391)2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28539475

RESUMEN

Although targeted therapies are often effective systemically, they fail to adequately control brain metastases. In preclinical models of breast cancer that faithfully recapitulate the disparate clinical responses in these microenvironments, we observed that brain metastases evade phosphatidylinositide 3-kinase (PI3K) inhibition despite drug accumulation in the brain lesions. In comparison to extracranial disease, we observed increased HER3 expression and phosphorylation in brain lesions. HER3 blockade overcame the resistance of HER2-amplified and/or PIK3CA-mutant breast cancer brain metastases to PI3K inhibitors, resulting in marked tumor growth delay and improvement in mouse survival. These data provide a mechanistic basis for therapeutic resistance in the brain microenvironment and identify translatable treatment strategies for HER2-amplified and/or PIK3CA-mutant breast cancer brain metastases.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor ErbB-3/metabolismo , Animales , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Ratones , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/genética
14.
Nature ; 546(7656): 168-172, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28538732

RESUMEN

Metabolic reprogramming by oncogenic signals promotes cancer initiation and progression. The oncogene KRAS and tumour suppressor STK11, which encodes the kinase LKB1, regulate metabolism and are frequently mutated in non-small-cell lung cancer (NSCLC). Concurrent occurrence of oncogenic KRAS and loss of LKB1 (KL) in cells specifies aggressive oncological behaviour. Here we show that human KL cells and tumours share metabolomic signatures of perturbed nitrogen handling. KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and bicarbonate, initiating nitrogen disposal. Transcription of CPS1 is suppressed by LKB1 through AMPK, and CPS1 expression correlates inversely with LKB1 in human NSCLC. Silencing CPS1 in KL cells induces cell death and reduces tumour growth. Notably, cell death results from pyrimidine depletion rather than ammonia toxicity, as CPS1 enables an unconventional pathway of nitrogen flow from ammonia into pyrimidines. CPS1 loss reduces the pyrimidine to purine ratio, compromises S-phase progression and induces DNA-polymerase stalling and DNA damage. Exogenous pyrimidines reverse DNA damage and rescue growth. The data indicate that the KL oncological genotype imposes a metabolic vulnerability related to a dependence on a cross-compartmental pathway of pyrimidine metabolism in an aggressive subset of NSCLC.


Asunto(s)
Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , ADN/biosíntesis , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirimidinas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Amoníaco/metabolismo , Animales , Bicarbonatos/metabolismo , Carbamoil-Fosfato Sintasa (Amoniaco)/deficiencia , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil Fosfato/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Muerte Celular , Proliferación Celular , Daño del ADN/efectos de los fármacos , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Silenciador del Gen , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Masculino , Metabolómica , Ratones , Mitocondrias/metabolismo , Nitrógeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Purinas/metabolismo , Pirimidinas/farmacología , Fase S , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Natl Cancer Inst ; 108(2)2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26547932

RESUMEN

BACKGROUND: Central nervous system (CNS) metastases represent a major problem in the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer because of the disappointing efficacy of HER2-targeted therapies against brain lesions. The antibody-drug conjugate ado-trastuzumab emtansine (T-DM1) has shown efficacy in trastuzumab-resistant systemic breast cancer. Here, we tested the hypothesis that T-DM1 could overcome trastuzumab resistance in murine models of brain metastases. METHODS: We treated female nude mice bearing BT474 or MDA-MB-361 brain metastases (n = 9-11 per group) or cancer cells grown in organotypic brain slice cultures with trastuzumab or T-DM1 at equivalent or equipotent doses. Using intravital imaging, molecular techniques and histological analysis we determined tumor growth, mouse survival, cancer cell apoptosis and proliferation, tumor drug distribution, and HER2 signaling. Data were analyzed with one-way analysis of variance (ANOVA), Kaplan-Meier analysis, and Coefficient of Determination. All statistical tests were two-sided. RESULTS: T-DM1 delayed the growth of HER2-positive breast cancer brain metastases compared with trastuzumab. These findings were consistent between HER2-driven and PI3K-driven tumors. The activity of T-DM1 resulted in a survival benefit (median survival for BT474 tumors: 28 days for trastuzumab vs 112 days for T-DM1, hazard ratio = 6.2, 95% confidence interval = 6.1 to 85.84, P < .001). No difference in drug distribution or HER2-signaling was revealed between the two groups. However, T-DM1 led to a statistically significant increase in tumor cell apoptosis (one-way ANOVA for ApopTag, P < .001), which was associated with mitotic catastrophe. CONCLUSIONS: T-DM1 can overcome resistance to trastuzumab therapy in HER2-driven or PI3K-driven breast cancer brain lesions due to the cytotoxicity of the DM1 component. Clinical investigation of T-DM1 for patients with CNS metastases from HER2-positive breast cancer is warranted.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Maitansina/análogos & derivados , Receptor ErbB-2/análisis , Ado-Trastuzumab Emtansina , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Western Blotting , Neoplasias Encefálicas/química , Neoplasias de la Mama/química , Proliferación Celular/efectos de los fármacos , Esquema de Medicación , Resistencia a Antineoplásicos , Femenino , Perfilación de la Expresión Génica , Estimación de Kaplan-Meier , Maitansina/administración & dosificación , Maitansina/farmacología , Ratones , Ratones Desnudos , Análisis por Micromatrices , Microscopía Electrónica , Oportunidad Relativa , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cancer Cell ; 28(1): 70-81, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26144315

RESUMEN

We report the preclinical evaluation of PF-06463922, a potent and brain-penetrant ALK/ROS1 inhibitor. Compared with other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK-driven brain metastases, leading to prolonged mouse survival, in a superior manner. Finally, PF-06463922 demonstrated high selectivity and safety margins in a variety of preclinical studies. These results suggest that PF-06463922 will be highly effective for the treatment of patients with ALK-driven lung cancers, including those who relapsed on clinically available ALK inhibitors because of secondary ALK kinase domain mutations and/or brain metastases.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Resistencia a Antineoplásicos/efectos de los fármacos , Lactamas Macrocíclicas/administración & dosificación , Neoplasias/tratamiento farmacológico , Proteínas Tirosina Quinasas Receptoras/genética , Aminopiridinas , Quinasa de Linfoma Anaplásico , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Lactamas , Lactamas Macrocíclicas/farmacología , Ratones , Mutación , Células 3T3 NIH , Neoplasias/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA