Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 21(3): 1274-1281, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33523666

RESUMEN

Surface-textured polymer nanocomposite (PNC) films are utilized in many device applications, and therefore understanding the relaxation behavior of such films is important. By extending an in situ wrinkle relaxation method, we observed that the thermal stability of wrinkled PNC films, both above and below the glass transition temperature (Tg), is proportional to a film's nanoparticle (polymer grafted and bare) concentration, with a slope that changes sign at a compensation temperature (Tcomp) that is determined to be in the vicinity of the film's Tg. This provides unambiguous confirmation of entropy-enthalpy compensation (EEC) as a general feature of PNC films, implying that the stability of PNC films changes from being enhanced to becoming diminished by simply passing through this characteristic temperature, a phenomenon having evident practical ramifications. We suggest EEC will also arise in films where residual stresses are associated with the film fabrication process, which is relevant to nanotech device applications.

2.
Nanoscale Adv ; 3(18): 5348-5354, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36132626

RESUMEN

We extend a previous study on the influence of nanoparticles on the decay of nanoimprinted polymer film patterns to compare the effects of "bare" silica (SiO2) nanoparticles and SiO2 nanoparticles with grafted polymer layers having the same chemical composition as the polymer matrix. This method involves nanoimprinting substrate-supported polymer films using a pattern replicated from a digital versatile disc (DVD), and then annealing the patterned polymer nanocomposite films at elevated temperatures to follow the decay of the topographic surface pattern with time by atomic force microscopy imaging after quenching. We quantified the relaxation of the pattern height ("slumping") and determined the relaxation time τ for this pattern decay process as a function of nanoparticle filler type and concentration to determine how nanoparticle additives influence relative film stability. Attractive interactions between the bare nanoparticles and the polymer matrix significantly enhance the thermal resilience of the nanopatterns to decay, compared to those of the particle brushes, wherein the particle core interactions are screened from the matrix via the brush layer. A novel aspect of this method is that it readily lends itself to in situ film relaxation measurements in a manufacturing context. We observe that the relaxation time of the pattern relaxation exhibits entropy-enthalpy compensation in the free energy parameters governing the pattern relaxation process as a function of temperature, irrespective of the NP system used, consistent with our previous experimental and computational studies.

3.
ACS Appl Mater Interfaces ; 12(13): 15943-15950, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32160455

RESUMEN

We combine in situ heated atomic force microscopy (AFM) with automated line-by-line spectral analysis to quantify the relaxation or decay phenomenon of nanopatterned composite polymer films above the glass-transition temperature of the composite material. This approach enables assessment of pattern fidelity with a temporal resolution of ≈1 s, providing the necessary data density to confidently capture the short-time relaxation processes inaccessible to conventional ex situ measurements. Specifically, we studied the thermal decay of nanopatterned poly(methyl methacrylate) (PMMA) and PMMA nanocomposite films containing unmodified and PMMA-grafted silica nanoparticles (SiO2 NP) of varying concentrations and film thicknesses using this new approach. Features imprinted on neat PMMA films were seen to relax at least an order of magnitude faster than the NP-filled films at decay temperatures above the glass transition of the PMMA matrix. It was also seen that patterned films with the lowest residual thickness (34 nm) filled with unmodified SiO2 NP decayed the slowest. The effect of nanoparticle additive was almost negligible in reinforcing the patterned features for films with the highest residual thickness (257 nm). Our in situ pattern decay measurement and the subsequent line-by-line spectral analysis enabled the investigation of various parameters affecting the pattern decay such as the underlying residual thickness, type of additive system, and temperature in a timely and efficient manner.

4.
Nano Lett ; 18(12): 7441-7447, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30398875

RESUMEN

Polymer films provide a versatile platform in which complex functional relief patterns can be thermally imprinted with a resolution down to few nanometers. However, a practical limitation of this method is the tendency for the imprinted patterns to relax ("slump"), leading to loss of pattern fidelity over time. While increasing temperature above glass transition temperature ( Tg) accelerates the slumping kinetics of neat films, we find that the addition of polymer-grafted nanoparticles (PGNP) can greatly enhance the thermal stability of these patterns. Specifically, increasing the concentration of poly(methyl methacrylate) (PMMA) grafted titanium dioxide (TiO2) nanoparticles in the composite films slows down film relaxation dynamics, leading to enhanced pattern stability for the temperature range that we investigated. Interestingly, slumping relaxation time is found to obey an entropy-enthalpy compensation (EEC) relationship with varying PGNP concentration, similar to recently observed relaxation of strain-induced wrinkling in glassy polymer films having variable film thickness. The compensation temperature,  Tcomp was found to be in the vicintity of the bulk  Tg of PMMA. Our results suggest a common origin of EEC relaxation in patterned polymer thin films and  nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...