Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7541, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215025

RESUMEN

A diverse antibody repertoire is essential for humoral immunity. Antibody diversification requires the introduction of deoxyuridine (dU) mutations within immunoglobulin genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR). dUs are normally recognized and excised by the base excision repair (BER) protein uracil-DNA glycosylase 2 (UNG2). However, FAM72A downregulates UNG2 permitting dUs to persist and trigger SHM and CSR. How FAM72A promotes UNG2 degradation is unknown. Here, we show that FAM72A recruits a C-terminal to LisH (CTLH) E3 ligase complex to target UNG2 for proteasomal degradation. Deficiency in CTLH complex components result in elevated UNG2 and reduced SHM and CSR. Cryo-EM structural analysis reveals FAM72A directly binds to MKLN1 within the CTLH complex to recruit and ubiquitinate UNG2. Our study further suggests that FAM72A hijacks the CTLH complex to promote mutagenesis in cancer. These findings show that FAM72A is an E3 ligase substrate adaptor critical for humoral immunity and cancer development.


Asunto(s)
Cambio de Clase de Inmunoglobulina , Ubiquitina-Proteína Ligasas , Humanos , Animales , Cambio de Clase de Inmunoglobulina/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Células HEK293 , Ubiquitinación , Hipermutación Somática de Inmunoglobulina/genética , Mutagénesis , Reparación del ADN , Proteolisis , Inmunidad Humoral , Ratones Endogámicos C57BL
2.
Nat Commun ; 15(1): 2369, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499553

RESUMEN

The APOBEC3 enzymes convert cytosines in single-stranded DNA to uracils to protect against viruses and retrotransposons but can contribute to mutations that diversify tumors. To understand the mechanism of mutagenesis, we map the uracils resulting from expression of APOBEC3B or its catalytic carboxy-terminal domain (CTD) in Escherichia coli. Like APOBEC3A, the uracilomes of A3B and A3B-CTD show a preference to deaminate cytosines near transcription start sites and the lagging-strand replication templates and in hairpin loops. Both biochemical activities of the enzymes and genomic uracil distribution show that A3A prefers 3 nt loops the best, while A3B prefers 4 nt loops. Reanalysis of hairpin loop mutations in human tumors finds intrinsic characteristics of both the enzymes, with a much stronger contribution from A3A. We apply Hairpin Signatures 1 and 2, which define A3A and A3B preferences respectively and are orthogonal to published methods, to evaluate their contribution to human tumor mutations.


Asunto(s)
Citosina , Neoplasias , Humanos , Citosina/metabolismo , Proteínas/metabolismo , Mutación , Citidina Desaminasa/metabolismo , Neoplasias/genética , Uracilo/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo
3.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260362

RESUMEN

In response to antigens, B cells undergo affinity maturation and class switching mediated by activation-induced cytidine deaminase (AID) in germinal centers (GCs) of secondary lymphoid organs, but uncontrolled AID activity can precipitate autoimmunity and cancer. The regulation of GC antibody diversification is of fundamental importance but not well understood. We found that autoimmune regulator (AIRE), the molecule essential for T cell tolerance, is expressed in GC B cells in a CD40-dependent manner, interacts with AID and negatively regulates antibody affinity maturation and class switching by inhibiting AID function. AIRE deficiency in B cells caused altered antibody repertoire, increased somatic hypermutations, elevated autoantibodies to T helper 17 effector cytokines and defective control of skin Candida albicans. These results define a GC B cell checkpoint of humoral immunity and illuminate new approaches of generating high-affinity neutralizing antibodies for immunotherapy.

4.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577595

RESUMEN

The APOBEC3 family of enzymes convert cytosines in single-stranded DNA to uracils thereby causing mutations. These enzymes protect human cells against viruses and retrotransposons, but in many cancers they contribute to mutations that diversify the tumors and help them escape anticancer drug treatments. To understand the mechanism of mutagenesis by APOBEC3B, we expressed the complete enzyme or its catalytic carboxy-terminal domain (CTD) in repair-deficient Eschericia coli and mapped the resulting uracils using uracil pull-down and sequencing technology. The uracilomes of A3B-full and A3B-CTD showed peaks in many of the same regions where APOBEC3A also created uracilation peaks. Like A3A, the two A3B enzymes also preferred to deaminate cytosines near transcription start sites and in the lagging-strand template at replication forks. In contrast to an earlier report that A3B does not favor hairpin loops over linear DNA, we found that both A3B-full and A3B-CTD showed a strong preference for cytosines in hairpin loops. The major difference between A3A and A3B was that while the former enzyme prefers 3 nt loops the best, A3B prefers loops of 4 nt over those of other lengths. Furthermore, within 5 nt loops, A3A prefers cytosine to be in the penultimate position, while A3B prefers it to be at the 3' end of the loop. We confirmed these loop size and sequence preferences experimentally using purified A3A and A3B-CTD proteins. Reanalysis of hairpin loop mutations in human tumors using the size, sequence and position preferences of the two enzymes found that the tumors displayed mutations with intrinsic characteristics of both the enzymes with a stronger contribution from A3A.

5.
DNA Repair (Amst) ; 118: 103381, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908367

RESUMEN

Murine FAM72A, mFAM72A, binds the nuclear form of uracil-DNA glycosylase, mUNG2, inhibits its activity and causes its degradation. In immunoprecipitation assays the human paralog, hFAM72A, binds hUNG2 and is a potential anti-cancer drug target because of its high expression in many cancers. Using purified mFAM72A, and mUNG2 proteins we show that mFAM72A binds mUNG2, and the N-terminal 25 amino acids of mUNG2 bind mFAM72A at a nanomolar dissociation constant. We also show that mFAM72A is present throughout the cells, and mUNG2 helps localize it to nuclei. Based on in silico models of mFAM72A-mUNG2 interactions, we constructed several mutants of mFAM72A and found that while they have reduced ability to deplete mUNG2, the mutations also destabilized the former protein. We confirmed that Withaferin A, a predicted lead molecule for the design of FAM72A inhibitors, binds mFAM72A with micromolar affinity but has little affinity to mUNG2. We identified two potential metal-binding sites in mFAM72A and show that one of the sites contains an Fe-S cluster. This redox-sensitive cluster is involved in the mFAM72A-mUNG2 interaction and modulates mFAM72A activity. Hydrogen peroxide treatment of cells increases mUNG2 depletion in a FAM72A-dependent fashion suggesting that mFAM72A activity is redox-sensitive.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Mitocondriales/metabolismo , Uracil-ADN Glicosidasa , Animales , Núcleo Celular/metabolismo , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Ratones , Oxidación-Reducción , Azufre/metabolismo , Uracil-ADN Glicosidasa/metabolismo
6.
Nucleic Acids Res ; 50(9): 5145-5157, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35524550

RESUMEN

Activation-induced deaminase (AID) is a DNA-cytosine deaminase that mediates maturation of antibodies through somatic hypermutation and class-switch recombination. While it causes mutations in immunoglobulin heavy and light chain genes and strand breaks in the switch regions of the immunoglobulin heavy chain gene, it largely avoids causing such damage in the rest of the genome. To help understand targeting by human AID, we expressed it in repair-deficient Escherichia coli and mapped the created uracils in the genomic DNA using uracil pull-down and sequencing, UPD-seq. We found that both AID and the human APOBEC3A preferentially target tRNA genes and transcription start sites, but do not show preference for highly transcribed genes. Unlike A3A, AID did not show a strong replicative strand bias or a preference for hairpin loops. Overlapping uracilation peaks between these enzymes contained binding sites for a protein, FIS, that helps create topological domains in the E. coli genome. To confirm whether these findings were relevant to B cells, we examined mutations from lymphoma and leukemia genomes within AID-preferred sequences. These mutations also lacked replicative strand bias or a hairpin loop preference. We propose here a model for how AID avoids causing mutations in the single-stranded DNA found within replication forks.


Asunto(s)
Citidina Desaminasa/metabolismo , Citosina/metabolismo , ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cambio de Clase de Inmunoglobulina , Hipermutación Somática de Inmunoglobulina , Uracilo/metabolismo
7.
Nature ; 600(7888): 324-328, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819670

RESUMEN

Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.


Asunto(s)
Linfocitos B , ADN Glicosilasas , Reparación de la Incompatibilidad de ADN , Cambio de Clase de Inmunoglobulina , Proteínas de la Membrana , Mutación , Proteínas de Neoplasias , Hipermutación Somática de Inmunoglobulina , Animales , Femenino , Humanos , Ratones , Linfocitos B/metabolismo , Sistemas CRISPR-Cas , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/metabolismo , Epistasis Genética , Células HEK293 , Cambio de Clase de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Hipermutación Somática de Inmunoglobulina/genética
8.
Nat Commun ; 12(1): 1602, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707442

RESUMEN

APOBEC mutagenesis, a major driver of cancer evolution, is known for targeting TpC sites in DNA. Recently, we showed that APOBEC3A (A3A) targets DNA hairpin loops. Here, we show that DNA secondary structure is in fact an orthogonal influence on A3A substrate optimality and, surprisingly, can override the TpC sequence preference. VpC (non-TpC) sites in optimal hairpins can outperform TpC sites as mutational hotspots. This expanded understanding of APOBEC mutagenesis illuminates the genomic Twin Paradox, a puzzling pattern of closely spaced mutation hotspots in cancer genomes, in which one is a canonical TpC site but the other is a VpC site, and double mutants are seen only in trans, suggesting a two-hit driver event. Our results clarify this paradox, revealing that both hotspots in these twins are optimal A3A substrates. Our findings reshape the notion of a mutation signature, highlighting the additive roles played by DNA sequence and DNA structure.


Asunto(s)
Transformación Celular Neoplásica/genética , Citidina Desaminasa/genética , ADN/genética , Antígenos de Histocompatibilidad Menor/genética , Conformación de Ácido Nucleico , Proteínas/genética , Secuencia de Bases/genética , Línea Celular Tumoral , Escherichia coli/genética , Células HEK293 , Humanos , Mutagénesis , Mutación , Neoplasias/genética
9.
NAR Cancer ; 2(4): zcaa033, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33196045

RESUMEN

Identifying the mechanisms mediating cisplatin response is essential for improving patient response. Previous research has identified base excision repair (BER) and mismatch repair (MMR) activity in sensitizing cells to cisplatin. Cisplatin forms DNA adducts including interstrand cross-links (ICLs) that distort the DNA helix, forcing adjacent cytosines to become extrahelical. These extrahelical cytosines provide a substrate for cytosine deaminases. Herein, we show that APOBEC3 (A3) enzymes are capable of deaminating the extrahelical cytosines to uracils and sensitizing breast cancer cells to cisplatin. Knockdown of A3s results in resistance to cisplatin and induction of A3 expression in cells with low A3 expression increases sensitivity to cisplatin. We show that the actions of A3s are epistatic with BER and MMR. We propose that A3-induced cytosine deamination to uracil at cisplatin ICLs results in repair of uracils by BER, which blocks ICL DNA repair and enhances cisplatin efficacy and improves breast cancer outcomes.

10.
Nucleic Acids Res ; 48(20): e118, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33074285

RESUMEN

The AID/APOBEC enzymes deaminate cytosines in single-stranded DNA (ssDNA) and play key roles in innate and adaptive immunity. The resulting uracils cause mutations and strand breaks that inactivate viruses and diversify antibody repertoire. Mutational evidence suggests that two members of this family, APOBEC3A (A3A) and APOBEC3B, deaminate cytosines in the lagging-strand template during replication. To obtain direct evidence for the presence of these uracils, we engineered a protein that covalently links to DNA at uracils, UdgX, for mammalian expression and immunohistochemistry. We show that UdgX strongly prefers uracils in ssDNA over those in U•G or U:A pairs, and localizes to nuclei in a dispersed form. When A3A is expressed in these cells, UdgX tends to form foci. The treatment of cells with cisplatin, which blocks replication, causes a significant increase in UdgX foci. Furthermore, this protein- and hence the uracils created by A3A- colocalize with replication protein A (RPA), but not with A3A. Using purified proteins, we confirm that RPA inhibits A3A by binding ssDNA, but despite its overexpression following cisplatin treatment, RPA is unable to fully protect ssDNA created by cisplatin adducts. This suggests that cisplatin treatment of cells expressing APOBEC3A should cause accumulation of APOBEC signature mutations.


Asunto(s)
Citidina Desaminasa/metabolismo , Citosina/metabolismo , Replicación del ADN , ADN/química , Proteínas/metabolismo , Proteína de Replicación A/metabolismo , Uracil-ADN Glicosidasa/genética , Uracilo/análisis , Núcleo Celular/metabolismo , Cisplatino/farmacología , Reactivos de Enlaces Cruzados/farmacología , Citidina Desaminasa/genética , ADN/metabolismo , ADN de Cadena Simple/metabolismo , Células HEK293 , Células HeLa , Humanos , Imidazoles/farmacología , Ingeniería de Proteínas , Proteínas/genética , Uracilo/química , Uracilo/metabolismo
11.
Virology ; 537: 104-109, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31493648

RESUMEN

APOBEC3 family of DNA-cytosine deaminases inactivate and mutate several human viruses. We constructed a human cell line that is inducible for EGFP-tagged APOBEC3A and found A3A predominantly in the nuclei. When these cells were infected with Herpes Simplex Virus-1, virus titer was unaffected by A3A expression despite nuclear virus replication. When A3A expression and virus infection were monitored, A3A was found predominantly to be nuclear in infected cells up to 3 h post-infection, but was predominantly cytoplasmic by 12 h. This effect did not require the whole virus, and could be reproduced using the UL39 gene of the virus which codes for a subunit of the viral ribonucleotide reductase. These results are similar to the reported exclusion of APOBEC3B by Epstein Barr virus ortholog of UL39, BORF2, but HSV1 UL39 gene product appears better at excluding A3A than A3B from nuclei.


Asunto(s)
Núcleo Celular/química , Citidina Desaminasa/análisis , Citoplasma/química , Herpesvirus Humano 1/crecimiento & desarrollo , Factores Inmunológicos/análisis , Proteínas/análisis , Proteínas Virales/biosíntesis , Animales , Chlorocebus aethiops , Citidina Desaminasa/genética , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Factores Inmunológicos/genética , Proteínas/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Coloración y Etiquetado , Células Vero , Proteínas Virales/genética
12.
J Biol Chem ; 294(41): 15037-15051, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31431505

RESUMEN

Activation-induced deaminase (AID) and apolipoprotein B mRNA-editing enzyme catalytic subunit (APOBEC) enzymes convert cytosines to uracils, creating signature mutations that have been used to predict sites targeted by these enzymes. Mutation-based targeting maps are distorted by the error-prone or error-free repair of these uracils and by selection pressures. To directly map uracils created by AID/APOBEC enzymes, here we used uracil-DNA glycosylase and an alkoxyamine to covalently tag and sequence uracil-containing DNA fragments (UPD-Seq). We applied this technique to the genome of repair-defective, APOBEC3A-expressing bacterial cells and created a uracilation genome map, i.e. uracilome. The peak uracilated regions were in the 5'-ends of genes and operons mainly containing tRNA genes and a few protein-coding genes. We validated these findings through deep sequencing of pulldown regions and whole-genome sequencing of independent clones. The peaks were not correlated with high transcription rates or stable RNA:DNA hybrid formation. We defined the uracilation index (UI) as the frequency of occurrence of TT in UPD-Seq reads at different original TC dinucleotides. Genome-wide UI calculation confirmed that APOBEC3A modifies cytosines in the lagging-strand template during replication and in short hairpin loops. APOBEC3A's preference for tRNA genes was observed previously in yeast, and an analysis of human tumor sequences revealed that in tumors with a high percentage of APOBEC3 signature mutations, the frequency of tRNA gene mutations was much higher than in the rest of the genome. These results identify multiple causes underlying selection of cytosines by APOBEC3A for deamination, and demonstrate the utility of UPD-Seq.


Asunto(s)
Mapeo Cromosómico , Citidina Desaminasa/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Genómica , Proteínas/metabolismo , Análisis de Secuencia de ADN , Uracilo/metabolismo , Secuencia de Bases , Citosina/metabolismo , Escherichia coli/genética , Humanos , Mutación , Especificidad por Sustrato , Transcripción Genética
13.
Mol Cell Biol ; 39(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30348839

RESUMEN

Phorbol 12-myristate 13-acetate (PMA) promotes skin cancer in rodents. The mutations found in murine tumors are similar to those found in human skin cancers, and PMA promotes proliferation of human skin cells. PMA treatment of human keratinocytes increases the synthesis of APOBEC3A, an enzyme that converts cytosines in single-stranded DNA to uracil, and mutations in a variety of human cancers are attributed to APOBEC3A or APOBEC3B expression. We tested here the possibility that induction of APOBEC3A by PMA causes genomic accumulation of uracils that may lead to such mutations. When a human keratinocyte cell line was treated with PMA, both APOBEC3A and APOBEC3B gene expression increased, anti-APOBEC3A/APOBEC3B antibody bound a protein(s) in the nucleus, and nuclear extracts displayed cytosine deamination activity. Surprisingly, there was little increase in genomic uracils in PMA-treated wild-type or uracil repair-defective cells. In contrast, cells transfected with a plasmid expressing APOBEC3A acquired more genomic uracils. Unexpectedly, PMA treatment, but not APOBEC3A plasmid transfection, caused a cessation in cell growth. Hence, a reduction in single-stranded DNA at replication forks may explain the inability of PMA-induced APOBEC3A/APOBEC3B to increase genomic uracils. These results suggest that the proinflammatory PMA is unlikely to promote extensive APOBEC3A/APOBEC3B-mediated cytosine deaminations in human keratinocytes.


Asunto(s)
Citidina Desaminasa/efectos de los fármacos , Antígenos de Histocompatibilidad Menor/efectos de los fármacos , Ésteres del Forbol/farmacología , Proteínas/efectos de los fármacos , Uracilo/metabolismo , Carcinógenos/metabolismo , Línea Celular , Transformación Celular Neoplásica/genética , Citosina/metabolismo , ADN de Cadena Simple/efectos de los fármacos , Genómica , Humanos , Queratinocitos/metabolismo , Mutagénesis/efectos de los fármacos , Neoplasias/genética
14.
PLoS Genet ; 14(7): e1007516, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30016327

RESUMEN

Recombination and mutagenesis are elevated by active transcription. The correlation between transcription and genome instability is largely explained by the topological and structural changes in DNA and the associated physical obstacles generated by the transcription machinery. However, such explanation does not directly account for the unique types of mutations originating from the non-canonical residues, uracil or ribonucleotide, which are also elevated at highly transcribed regions. Based on the previous findings that abasic (AP) lesions derived from the uracil residues incorporated into DNA in place of thymine constitute a major component of the transcription-associated mutations in yeast, we formed the hypothesis that DNA synthesis ensuing from the repair of the transcription-induced DNA damage provide the opportunity for uracil-incorporation. In support of this hypothesis, we show here the positive correlation between the level of transcription and the density of uracil residues in the yeast genome indirectly through the mutations generated by the glycosylase that excise undamaged cytosine as well as uracil. The higher uracil-density at actively transcribed regions is confirmed by the long-amplicon PCR analysis. We also show that the uracil-associated mutations at a highly transcribed region are elevated by the induced DNA damage and reduced by the overexpression of a dUTP-catalyzing enzyme Dut1 in G1- or G2-phases of the cell cycle. Overall, our results show that the DNA composition can be modified to include higher uracil-content through the non-replicative, repair-associated DNA synthesis.


Asunto(s)
Replicación del ADN/genética , ADN de Hongos/biosíntesis , Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Uracilo/metabolismo , Ciclo Celular/genética , Daño del ADN/genética , ADN de Hongos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inestabilidad Genómica/genética , Genómica , Mutagénesis/genética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Timina/metabolismo
15.
PLoS One ; 12(9): e0185010, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28926604

RESUMEN

Most B cell cancers overexpress the enzyme activation-induced deaminase at high levels and this enzyme converts cytosines in DNA to uracil. The constitutive expression of this enzyme in these cells greatly increases the uracil content of their genomes. We show here that these genomes also contain high levels of abasic sites presumably created during the repair of uracils through base-excision repair. We further show that three alkoxyamines with an alkyne functional group covalently link to abasic sites in DNA and kill immortalized cell lines created from B cell lymphomas, but not other cancers. They also do not kill normal B cells. Treatment of cancer cells with one of these chemicals causes strand breaks, and the sensitivity of the cells to this chemical depends on the ability of the cells to go through the S phase. However, other alkoxyamines that also link to abasic sites- but lack the alkyne functionality- do not kill cells from B cell lymphomas. This shows that the ability of alkoxyamines to covalently link to abasic sites is insufficient for their cytotoxicity and that the alkyne functionality may play a role in it. These chemicals violate the commonly accepted bioorthogonality of alkynes and are attractive prototypes for anti-B cell cancer agents.


Asunto(s)
Aminas/farmacología , Linfocitos B/efectos de los fármacos , ADN/metabolismo , Aminas/química , Antineoplásicos/farmacología , Linfocitos B/citología , Linfocitos B/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , ADN/química , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Células HEK293 , Células HeLa , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Células MCF-7
16.
Indian J Med Res ; 144(1): 92-103, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27834332

RESUMEN

BACKGROUND & OBJECTIVES: The pathogenicity of the nosocomial pathogens, Pseudomonas aeruginosa and Acinetobacter baumannii is regulated by their quorum sensing (QS) systems. The objective of the present study was to examine the effect of the cold ethyl acetate extract of Tinospora cordifolia stem on virulence and biofilm development in the wild type and clinical strains of P. aeruginosa and A. baumannii. The study was further aimed to identify the probable active constituents in the plant extract. METHODS: P. aeruginosa virulence factors viz., LasA protease, LasB elastase and pyocyanin production were analyzed spectrophotometrically. Biofilm formation was studied using crystal violet staining-microtitre plate assay. The plant extract was fractionated using silica gel column chromatography and the most active fraction was derivatized using silylation and analyzed by gas chromatography-mass spectrometry (GC-MS). In silico testing of the molecules identified in GC-MS was performed, for binding to the P. aeruginosa LasI and LasR proteins, to predict the QS inhibitory molecules. RESULTS: The plant extract inhibited three major virulence factors in P. aeruginosa; it exhibited enhanced biofilm formation in P. aeruginosa while decreased biofilm development in A. baumannii. The most active fraction obtained from column chromatography, exhibited suppression of virulence as well as biofilm in both the organisms. Docking scores were calculated for all the molecules identified in GC-MS, and high docking scores were obtained for 2,3,4-triacetyloxybutyl acetate, methyl 16-methyl heptadecanoate, 2-(5-ethenyl-5-methyloxolan-2-yl)propan-2-ol, methyl hexadecanoate and 2-methoxy-4-vinyl phenol. INTERPRETATION & CONCLUSIONS: The compounds showing high docking scores could probably be the QS inhibitors. These molecules can be screened further for the development of new anti-infective drugs.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Biopelículas/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Pseudomonas aeruginosa/efectos de los fármacos , Acinetobacter baumannii/patogenicidad , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Humanos , Metaloendopeptidasas/genética , Metaloproteasas/genética , Extractos Vegetales/química , Pseudomonas aeruginosa/patogenicidad , Piocianina/genética , Percepción de Quorum/efectos de los fármacos , Tinospora/química , Factores de Virulencia/biosíntesis , Factores de Virulencia/genética
17.
Chem Rev ; 116(20): 12688-12710, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27585283

RESUMEN

The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.


Asunto(s)
Citidina Desaminasa/metabolismo , ADN/metabolismo , Desaminasas APOBEC/metabolismo , Animales , Mamíferos
18.
Cell Cycle ; 15(7): 998-1008, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26918916

RESUMEN

The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.


Asunto(s)
Citidina Desaminasa/metabolismo , Daño del ADN , Replicación del ADN , Proteínas/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular , Desaminación , Genoma , Humanos , Estrés Fisiológico
19.
Proc Natl Acad Sci U S A ; 113(8): 2176-81, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26839411

RESUMEN

The rate of cytosine deamination is much higher in single-stranded DNA (ssDNA) than in double-stranded DNA, and copying the resulting uracils causes C to T mutations. To study this phenomenon, the catalytic domain of APOBEC3G (A3G-CTD), an ssDNA-specific cytosine deaminase, was expressed in an Escherichia coli strain defective in uracil repair (ung mutant), and the mutations that accumulated over thousands of generations were determined by whole-genome sequencing. C:G to T:A transitions dominated, with significantly more cytosines mutated to thymine in the lagging-strand template (LGST) than in the leading-strand template (LDST). This strand bias was present in both repair-defective and repair-proficient cells and was strongest and highly significant in cells expressing A3G-CTD. These results show that the LGST is accessible to cellular cytosine deaminating agents, explains the well-known GC skew in microbial genomes, and suggests the APOBEC3 family of mutators may target the LGST in the human genome.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Desaminasa APOBEC-3G , Secuencia de Bases , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Citosina/metabolismo , ADN/genética , ADN/metabolismo , Reparación del ADN/genética , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desaminación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Humanos , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Timina/metabolismo , Uracilo/metabolismo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
20.
J Mol Biol ; 427(19): 3042-55, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26281709

RESUMEN

Human APOBEC3B deaminates cytosines in DNA and belongs to the AID/APOBEC family of enzymes. These proteins are involved in innate and adaptive immunity and may cause mutations in a variety of cancers. To characterize its ability to convert cytosines into uracils, we tested several derivatives of APOBEC3B gene for their ability to cause mutations in Escherichia coli. Through this analysis, a methionine residue at the junction of the amino-terminal domain (NTD) and the carboxy-terminal domain (CTD) was found to be essential for high mutagenicity. Properties of mutants with substitutions at this position, examination of existing molecular structures of APOBEC3 family members and molecular modeling suggest that this residue is essential for the structural stability of this family of proteins. The APOBEC3B CTD with the highest mutational activity was purified to homogeneity and its kinetic parameters were determined. Size-exclusion chromatography of the CTD monomer showed that it is in equilibrium with its dimeric form and matrix-assisted laser desorption ionization time-of-flight analysis of the protein suggested that the dimer may be quite stable. The partially purified NTD did not show intrinsic deamination activity and did not enhance the activity of the CTD in biochemical assays. Finally, APOBEC3B was at least 10-fold less efficient at mutating 5-methylcytosine (5mC) to thymine than APOBEC3A in a genetic assay and was at least 10-fold less efficient at deaminating 5mC compared to C in biochemical assays. These results shed light on the structural organization of APOBEC3B catalytic domain, its substrate specificity and its possible role in causing genome-wide mutations.


Asunto(s)
Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , Metionina/análisis , Proteínas/química , Proteínas/metabolismo , 5-Metilcitosina/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Citidina Desaminasa/genética , Citosina/metabolismo , Humanos , Metionina/genética , Metionina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Multimerización de Proteína , Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...