RESUMEN
Sodium channel 8 alpha (SCN8A) mutations encompass a spectrum of epilepsy phenotypes with diverse clinical manifestations, posing diagnostic challenges. We present a case of a nine-year-old male with SCN8A gene-associated developmental and epileptic encephalopathies (DEEs), characterized by generalized tonic-clonic seizures (GTCS) since infancy. Despite treatment with multiple antiepileptic drugs (AEDs), including phenytoin, valproate, levetiracetam, carbamazepine, and clobazam, seizure control remained elusive, prompting genetic testing. Whole exome sequencing confirmed a heterozygous mutation (p.Phe210Ser) in SCN8A exon 6, indicative of DEE-13. Functional studies revealed a gain-of-function mechanism in SCN8A variants, resulting in heightened ion channel activity and altered voltage dependence of activation. Despite treatment adjustments, the patient's seizures persisted until topiramate was introduced, offering partial relief. SCN8A, encoding Nav1.6 sodium channels, modulates neuronal excitability, with mutations leading to increased persistent currents and hyperexcitability. Early seizure onset and developmental delays are hallmarks of SCN8A-related DEE. This case highlights the significance of genetic testing in refractory epilepsy management, guiding personalized treatment strategies. Sodium channel blockers like phenytoin and carbamazepine are often first-line therapies, while topiramate presents as a potential adjunctive option in SCN8A-related DEE. Overall, this case underscores the diagnostic and therapeutic complexities of managing SCN8A-related epileptic encephalopathy, emphasizing the importance of long-term monitoring and personalized treatment approaches for optimizing outcomes in refractory epilepsy.
RESUMEN
Infective endocarditis, a fatal infection with rising morbidity and mortality rates among infants and children, is characterized by microbial infection within the endocardium, the inner lining of the heart including heart valves. The heightened susceptibility to infection in children is attributed to pre-existing pathologies, structural defects, and comorbidities. This report details a case of a one-year-old child with tetralogy of Fallot, showcasing isolated pulmonary valve vegetations as a distinctive manifestation of infective endocarditis.