Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 202(7)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31932314

RESUMEN

Bacterial cell division requires the assembly of a multiprotein division machinery, or divisome, that remodels the cell envelope to cause constriction. The cytoskeletal protein FtsZ forms a ringlike scaffold for the divisome at the incipient division site. FtsZ has three major regions: a conserved GTPase domain that polymerizes into protofilaments on binding GTP, a C-terminal conserved peptide (CTC) required for binding membrane-anchoring proteins, and a C-terminal linker (CTL) region of varied length and low sequence conservation. Recently, we demonstrated that the CTL regulates FtsZ polymerization properties in vitro and Z-ring structure and cell wall metabolism in vivo In Caulobacter crescentus, an FtsZ variant lacking the CTL (designated ΔCTL) can recruit all known divisome members and drive local cell wall synthesis but has dominant lethal effects on cell wall metabolism. To understand the underlying mechanism of the CTL-dependent regulation of cell wall metabolism, we expressed chimeras of FtsZ domains from C. crescentus and Escherichia coli and observed that the E. coli GTPase domain fused to the C. crescentus CTC phenocopies C. crescentus ΔCTL. By investigating the contributions of FtsZ-binding partners, we identified variants of FtsA, a known membrane anchor for FtsZ, that delay or exacerbate the ΔCTL phenotype. Additionally, we observed that the ΔCTL protein forms extended helical structures in vivo upon FtsA overproduction. We propose that misregulation downstream of defective ΔCTL assembly is propagated through the interaction between the CTC and FtsA. Overall, our study provides mechanistic insights into the CTL-dependent regulation of cell wall enzymes downstream of FtsZ polymerization.IMPORTANCE Bacterial cell division is essential and requires the recruitment and regulation of a complex network of proteins needed to initiate and guide constriction and cytokinesis. FtsZ serves as a master regulator for this process, and its function is highly dependent on both its assembly into the canonical Z ring and interactions with protein binding partners, all of which results in the activation of enzymes that remodel the cell wall to drive constriction. Using mutants of FtsZ, we have elaborated on the role of its C-terminal linker domain in regulating Z-ring stability and dynamics, as well as the requirement for its conserved C-terminal domain and interaction with the membrane-anchoring protein FtsA for regulating the process of cell wall remodeling for constriction.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/fisiología , Pared Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Bacterianas/química , Caulobacter crescentus/citología , División Celular , Proteínas del Citoesqueleto/química , Escherichia coli/fisiología , Modelos Biológicos , Mutación , Peptidoglicano/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
2.
PLoS Genet ; 13(9): e1006999, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28886022

RESUMEN

During its life cycle, Caulobacter crescentus undergoes a series of coordinated shape changes, including generation of a polar stalk and reshaping of the cell envelope to produce new daughter cells through the process of cytokinesis. The mechanisms by which these morphogenetic processes are coordinated in time and space remain largely unknown. Here we demonstrate that the conserved division complex FtsEX controls both the early and late stages of cytokinesis in C. crescentus, namely initiation of constriction and final cell separation. ΔftsE cells display a striking phenotype: cells are chained, with skinny connections between cell bodies resulting from defects in inner membrane fusion and cell separation. Surprisingly, the thin connections in ΔftsE cells share morphological and molecular features with C. crescentus stalks. Our data uncover unanticipated morphogenetic plasticity in C. crescentus, with loss of FtsE causing a stalk-like program to take over at failed division sites.


Asunto(s)
Caulobacter crescentus/genética , División Celular/genética , Pared Celular/genética , Morfogénesis/genética , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Caulobacter crescentus/crecimiento & desarrollo , Caulobacter crescentus/ultraestructura , Pared Celular/ultraestructura , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Citocinesis/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólisis , Microscopía Electrónica de Transmisión , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...