Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(5): 158, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592601

RESUMEN

Candida species is the causative agent in approximately 80% of invasive mycoses and drug-resistant Candida albicans is among the four strains of 'critical priority group' framed by WHO. Lichens are endowed with some rare phytochemicals and a plethora of therapeutics viz. antifungal capacities of Roccella montagnei. Biosynthesis of silver nanoparticles (AgNPs) using lichen could offer an eco-friendly, and cost-effective alternative against emerging 'microbial resistance.' Therefore, the objective was to biosynthesize silver nanoparticles (Rm-AgNPs) using a Hydro-alcoholic (1:1) extract of R. montagnei to develop a potent anticandidal agent against Fluconazole-resistant C. albicans NBC099. UV-Spectroscopy identified AgNPs specific-peak of Rm-AgNPs at 420-440 nm and FTIR revealed the presence of amines, alcohol, aromatic compounds, and acids. SEM and TEM analysis indicated that Rm-AgNPs are spherical shaped with a size range of 10-50 nm. Zetasizer analysis indicated that particles are highly stable and have a mean hydrodynamic diameter of 116 nm with a zeta potential charge of - 41 mV. XRD analysis suggested face centered cubic crystal lattice structure. Results indicated that Rm-AgNPs strongly inhibited the growth of NBC099 at a minimum inhibitory concentration (IC50) of ≤ 15 µg. C. albicans culture treated with Rm-AgNPs at concentrations below IC50, down-regulates the production of different virulence factors in NBC099, viz. hyphal formation (> 85%), biofilms production (> 80%), phospholipase, esterase, proteinase activity. The apoptosis assay demonstrated the Rm-AgNPs induced apoptosis in NBC099 cells via oxidative stress. Interestingly, Rm-AgNPs showed negligible cytotoxicity (< 6%) in murine RAW 246.7 macrophage cells at a concentration above 15 µg/mL. Therefore, Rm-AgNPs have been offered as an anti-candida alternative that can be utilized to improve the efficacy of already available medications.


Asunto(s)
Ascomicetos , Candida albicans , Nanopartículas del Metal , Animales , Ratones , Fluconazol/farmacología , Plata/farmacología , Candida
2.
Arch Microbiol ; 205(8): 277, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418197

RESUMEN

Catheter-associated urinary tract infections (CAUTI) are the most common healthcare problem in hospitals. In this study, we isolated the Daldinia starbaeckii (An endolichenic fungus from Roccella montagnie) and its biomass extract were used to simultaneously synthesize and deposit DSFAgNPs on the inner and outer surfaces of the catheter tube using chitosan biopolymer via In-situ deposition method. Perfectly designed D. starbaeckii extract functionalized DSFAgNPs were characterized by UV spectroscopy, FTIR, SEM, EDS, TEM, and XRD. The microbial efficacy of DSFAgNPs & DSFAgNPs coated catheter (CTH3) was evaluated against eight human pathogenic gram (+ / -) ive strains and Candida albicans. Results indicated DSFAgNPs showed significant biological activity against both gram (+ / -) ive bacteria with an average MIC90 of 4 µl/ml. The most promising activity was observed against Helicobacter pylori. When bacteria strains allow to grow with CTH3 we reported significant reduction in colony formation unit (CFU/ml) in broth culture assay with an average 70% inhibition. Further, antibiofilm activity of CTH3 against P. aeruginosa showed strong inhibition of biofilm formation (85%). The study explored an alternate approach for significantly prevent CAUTI among hospital patients. We isolated an endolichenic fungus from lichen Roccella montagnei. The molecular characterization of fungus identified as Daldinia starbaeckii (DSF). The DSF was cultured and its fungal biomass exudes were used to simultaneously construct DSF-AgNPs and its deposition on the catheter surface using biopolymer chitosan via In-situ deposition method. Further, antimicrobial and antibiofilm efficacy of DSF-AgNPs was checked against urinary catheter contaminating and human pathogenic bacterial strains. Based on our research, we determined that DSF-AgNPs coating on a urinary catheter through this method is a cost-effective, eco-friendly approach to prevent catheter contamination.


Asunto(s)
Quitosano , Nanopartículas del Metal , Infecciones Urinarias , Humanos , Catéteres Urinarios/microbiología , Quitosano/farmacología , Polímeros/farmacología , Plata/farmacología , Nanopartículas del Metal/química , Biopelículas , Bacterias , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/prevención & control , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA