Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chall ; 3(11): 1900050, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31692982

RESUMEN

Lead halide perovskites have displayed the highest solar power conversion efficiencies of 23% but the toxicity issues of these materials need to be addressed. Lead-free perovskites have emerged as viable candidates for potential use as light harvesters to ensure clean and green photovoltaic technology. The substitution of lead by Sn, Ge, Bi, Sb, Cu and other potential candidates have reported efficiencies of up to 9%, but there is still a dire need to enhance their efficiencies and stability within the air. A comprehensive review is given on potential substitutes for lead-free perovskites and their characteristic features like energy bandgaps and optical absorption as well as photovoltaic parameters like open-circuit voltage (V OC), fill factor, short-circuit current density (J  SC), and the device architecture for their efficient use. Lead-free perovskites do possess a suitable bandgap but have low efficiency. The use of additives has a significant effect on their efficiency and stability. The incorporation of cations like diethylammonium, phenylethyl ammonium, phenylethyl ammonium iodide, etc., or mixed cations at different compositions at the A-site is reported with engineered bandgaps having significant efficiency and stability. Recent work on the advancement of lead-free perovskites is also reviewed.

2.
Phys Chem Chem Phys ; 19(38): 26169-26178, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28930319

RESUMEN

The design and fabrication of better excitonic solar cells are the need of the hour for futuristic energy solutions. This designing needs a better understanding of the charge transport properties of excitonic solar cells. One of the popular methods of understanding the charge transport properties is the analysis of the J-V characteristics of a device through theoretical simulation at varied illumination intensity. Herein, a J-V characteristic of a polymer:fullerene based bulk heterojunction (BHJ) organic solar cells (OSCs) of structure ITO/PEDOT:PSS (∼40 nm)/PTB7:PC71BM (∼100 nm)/Al (∼120 nm) is analyzed using one- and two-diode models at varied illumination intensity in the range of 0.1-2.33 Sun. It was found that the double diode model is better with respect to the single diode model and can explain the J-V characteristics of the OSCs correctly. Further, the recombination mechanism is investigated thoroughly and it was observed that fill factor (FF) is in the range of 62.5%-41.4% for the corresponding values of the recombination-to-extraction ratio (θ) varying from 0.001 to 0.023. These findings are attributed to the change in charge transport mechanism from trap-assisted to bimolecular recombination with the variation of illumination intensity.

3.
Sci Rep ; 7: 43133, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28225039

RESUMEN

A new class of pyridyl benzimdazole based Ru complex decorated polyaniline assembly (PANI-Ru) was covalently grafted onto reduced graphene oxide sheets (rGO) via covalent functionalization approach. The covalent attachment of PANI-Ru with rGO was confirmed from XPS analysis and Raman spectroscopy. The chemical bonding between PANI-Ru and rGO induced the electron transfer from Ru complex to rGO via backbone of the conjugated PANI chain. The resultant hybrid metallopolymer assembly was successfully demonstrated as an electron donor in bulk heterojunction polymer solar cells (PSCs). A PSC device fabricated with rGO/PANI-Ru showed an utmost ~6 fold and 2 fold enhancement in open circuit potential (Voc) and short circuit current density (Jsc) with respect to the standard device made with PANI-Ru (i.e., without rGO) under the illumination of AM 1.5 G. The excellent electronic properties of rGO significantly improved the electron injection from PANI-Ru to PCBM and in turn the overall performance of the PSC device was enhanced. The ultrafast excited state charge separation and electron transfer role of rGO sheet in hybrid metallopolymer was confirmed from ultrafast spectroscopy measurements. This covalent modification of rGO with metallopolymer assembly may open a new strategy for the development of new hybrid nanomaterials for light harvesting applications.

4.
Adv Mater ; 27(30): 4398-4404, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26109435

RESUMEN

Optically resonant donor polymers can exploit a wider range of the solar spectrum effectively without a complicated tandem design in an organic solar cell. Ultrafast Förster resonance energy transfer (FRET) in a polymer-polymer system that significantly improves the power conversion efficiency in bulk heterojunction polymer solar cells from 6.8% to 8.9% is demonstrated, thus paving the way to achieving 15% efficient solar cells.

5.
Phys Chem Chem Phys ; 16(48): 27043-52, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25382728

RESUMEN

For the first time, we here propose a green methodology to modify a low bandgap polymer for highly efficient solar cells using atmospheric pressure plasma jet or soft plasma operating on different feeding gases (air, Ar and N2). The physical properties of the modified polymer were investigated using conductivity measurements, UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammograms, atomic force microscopy, cathodoluminescence and confocal Raman spectroscopy. Further, we examined the variation of the work function of the polymer before and after plasma treatment using a γ-focused ion beam. Additionally, photovoltaic cells based on the plasma-modified polymer having ITO/PEDOT:PSS/PHVTT (with or without plasma modification):PC71BM/LiF/Al configuration were fabricated and then characterized. We found that the power conversion efficiency (PCE) of the plasma-modified polymer increased dramatically as compared to the control polymer (without plasma treatment). PCE of the control polymer was found to be 4.11%, while after air, Ar and N2 gas plasma treatment the polymer showed PCEs of 4.85%, 4.87% and 5.14% respectively. Thus, plasma treatment not only alters the surface properties, but also modifies the bulk properties (changes in HOMO and LUMO bandgap level). Hence, this work provides new dimensions to explore more about plasma and polymer chemistry.


Asunto(s)
Suministros de Energía Eléctrica , Gases em Plasma/química , Polímeros/química , Energía Solar , Tiazoles/química , Diseño de Equipo , Tecnología Química Verde
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...