Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Stem Cell Rev Rep ; 20(4): 857-880, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457060

RESUMEN

Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.


Asunto(s)
Epigénesis Genética , Mutación , Neoplasias , Células Madre Neoplásicas , Humanos , Neoplasias/genética , Neoplasias/patología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Animales , Células Madre Embrionarias/metabolismo
3.
Stem Cell Rev Rep ; 20(1): 258-282, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779174

RESUMEN

Pluripotent, very small embryonic-like stem cells (VSELs) and tissue-committed 'progenitors' termed endometrial stem cells (EnSCs) are reported in mouse uterus. They express gonadal and gonadotropin hormone receptors and thus are vulnerable to early-life endocrine insults. Neonatal exposure of mouse pups to endocrine disruption cause stem/progenitor cells to undergo epigenetic changes, excessive self-renewal, and blocked differentiation that results in various uteropathies including non-receptive endometrium, hyperplasia, endometriosis, adenomyosis, and cancer-like changes in adult life. Present study investigated reversal of these uteropathies, by normalizing functions of VSELs and EnSCs. Two strategies were evaluated including (i) transplanting mesenchymal stromal cells (provide paracrine support) on D60 or (ii) oral administration of XAR (epigenetic regulator) daily from days 60-100 and effects were studied later in 100 days old mice. Results show normalization of stem/progenitor cells (Oct-4, Oct-4A, Sox-2, Nanog) and Wnt signalling (Wnt-4, ß-catenin, Axin-2) specific transcripts. Flow cytometry results showed reduced numbers of 2-6 µm, LIN-CD45-SCA-1 + VSELs. Hyperplasia (Ki67) of epithelial (Pax-8, Foxa-2) and myometrial (α-Sma, Tgf-ß) cells was reduced, adenogenesis (differentiation of glands) was restored, endometrial receptivity and differentiation (LIF, c-KIT, SOX-9, NUMB) and stromal cells niche (CD90, VIMENTIN, Pdgfra, Vimentin) were improved, cancer stem cells markers (OCT-4, CD166) were reduced while tumor suppressor genes (PTEN, P53) and epigenetic regulators (Ezh-2, Sirt-1) were increased. To conclude, normalizing VSELs/EnSCs to manage uteropathies provides a novel basis for initiating clinical studies. The study falls under the umbrella of United Nations Sustainable Development Goal 3 to ensure healthy lives and well-being for all of all ages.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Células Madre Pluripotentes , Femenino , Animales , Ratones , Vimentina , Hiperplasia , Células Madre Embrionarias
8.
Stem Cell Rev Rep ; 19(7): 2525-2540, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37561284

RESUMEN

Reproductive health of men is declining in today's world due to increased developmental exposure to endocrine-disrupting chemicals (EDCs). We earlier reported that neonatal exposure to endocrine disruption resulted in reduced numbers of seminiferous tubules in Stage VIII, decreased sperm count, and infertility along with testicular tumors in 65% of diethylstilbestrol (DES) treated mice. Epigenetic changes due to EDCs, pushed the VSELs out of a quiescent state to enter cell cycle and undergo excessive self-renewal while transition of c-KIT- stem cells into c-KIT + germ cells was blocked due to altered MMR axis (Np95, Pcna, Dnmts), global hypomethylation (reduced expression of 5-methylcytosine) and loss of imprinting at Igf2-H19 and Dlk1-Meg3 loci. The present study was undertaken to firstly show similar defects in FACS sorted VSELs from DES treated testis and to further explore the reversal of these testicular pathologies by (i) oral administration of XAR (a nano-formulation of resveratrol) or (ii) inter-tubular transplantation of mesenchymal stromal cells (MSCs). Similar defects as reported earlier in the testes were evident, based on RNAseq data, on FACS sorted VSELs from DES treated mice. Both strategies were found effective, improved spermatogenesis, increased number of tubules in Stage VIII, normalized numbers of VSELs and c-KIT + cells, improved epigenetic status of VSELs to restore quiescent state, and reduced cancer incidence from 65% after DES to 13.33% and 20% after XAR treatment or MSCs transplantation respectively. Results provide a basis for initiating clinical studies and the study falls under the umbrella of United Nations Sustainable Development Goal 3 to ensure healthy lives and well-being for all of all ages.

11.
Stem Cells ; 41(4): 310-318, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36881778

RESUMEN

Cancer continues to remain a "Black Box," as there is no consensus on how it initiates, progresses, metastasizes, or recurs. Many imponderables exist about whether somatic mutations initiate cancer, do cancer stem cells (CSCs) exist, and if yes, are they a result of de-differentiation or originate from tissue-resident stem cells; why do cancer cells express embryonic markers, and what leads to metastasis and recurrence. Currently, the detection of multiple solid cancers through liquid biopsy is based on circulating tumor cells (CTCs) or clusters, or circulating tumor DNA (ctDNA). However, quantity of starting material is usually adequate only when the tumor has grown beyond a certain size. We posit that pluripotent, endogenous, tissue-resident, very small embryonic-like stem cells (VSELs) that exist in small numbers in all adult tissues, exit from their quiescent state due to epigenetic changes in response to various insults and transform into CSCs to initiate cancer. VSELs and CSCs share properties like quiescence, pluripotency, self-renewal, immortality, plasticity, enrichment in side-population, mobilization, and resistance to oncotherapy. HrC test, developed by Epigeneres, offers the potential for early detection of cancer using a common set of VSEL/CSC specific bio-markers in peripheral blood. In addition, NGS studies on VSELs/CSCs/tissue-specific progenitors using the All Organ Biopsy (AOB) test provide exomic and transcriptomic information regarding impacted organ(s), cancer type/subtype, germline/somatic mutations, altered gene expressions, and dysregulated pathways. To conclude, HrC and AOB tests can confirm the absence of cancer and categorize the rest of subjects into low/moderate/high risk of cancer, and also monitor response to therapy, remission, and recurrence.


Asunto(s)
Neoplasias , Células Madre Pluripotentes , Adulto , Humanos , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Células Madre Neoplásicas , Pruebas Hematológicas , Neoplasias/diagnóstico , Neoplasias/patología
14.
J Ovarian Res ; 16(1): 29, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726163

RESUMEN

Multiple studies using single-cell RNA sequencing (scRNAseq) have failed to detect stem cells in adult ovaries. We have maintained that two populations of ovarian stem cells including pluripotent, very small embryonic-like stem cells (VSELs) and tissue-committed 'progenitors' termed ovarian stem cells (OSCs) can easily be detected in Hematoxylin and Eosin-stained ovary surface epithelial (OSE) cells smears prepared from both mice and human ovaries. Most likely the stem cells never get subjected to scRNAseq since they pellet down only by centrifuging cells suspension at 1000 g while cells for scRNAseq were invariably prepared by centrifuging at 200-400 g. A recent article provided further explanation for the failure of scRNAseq to detect ovarian stem cells. Extensive reanalysis of data (generated by scRNAseq) using an advanced software successfully detected OSCs and meiotic markers supporting neo-oogenesis in adult human ovaries. But this article remained critical on the biological relevance of VSELs and their relationship with OSCs. By carefully studying the OSE cells smears (which hold VSELs, OSCs and germ cell nests GCNs), prepared by partial trypsin digestion of intact mice ovaries during different stages of estrus cycle, we have successfully delineated novel functions of VSELs/OSCs in vivo under physiological conditions. VSELs undergo asymmetrical divisions to self-renew and give rise to slightly bigger OSCs which in turn undergo symmetrical divisions and clonal expansion to form GCNs, regular neo-oogenesis and follicle assembly. GCNs have been earlier described in fetal ovaries and during OSE cells culture (from adult ovaries) in response to FSH treatment. Dysfunction of VSELs/OSCs (which express ERα, ERß, FSHR) due to neonatal exposure to endocrine disruption results in ovarian insufficiency and polycystic ovaries. VSELs have also been implicated in ovarian cancer. Age-related ovarian senescence/menopause is also due to dysfunction and blocked differentiation of VSELs/OSCs. These novel findings in vivo along with abundant in vitro and lineage tracing studies data in published literature provides huge scope for further research, offers novel avenues to manage ovarian pathologies and calls for re-writing of textbooks.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Adulto , Humanos , Animales , Ratones , Oogénesis , Células Madre Embrionarias , Folículo Ovárico , Diferenciación Celular
15.
Reproduction ; 165(3): 249-268, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36488194

RESUMEN

In brief: Incidence of uteropathies has increased in recent times, possibly due to exposure to endocrine-disrupting chemicals during early development. The present study shows that various uteropathies like endometrial cancer, adenomyosis, and endometriosis are interlinked and occur due to the dysfunction of tissue-resident, very small embryonic-like stem cells (VSELs). Abstract: Underlying pathomechanisms leading to the initiation of uteropathies including non-receptive endometrium, hyperplasia, adenomyosis, endometriosis, fibroids, and cancer remain elusive. Two populations of stem cells exist in mouse uterus including pluripotent VSELs and 'progenitors' termed endometrial stem cells (EnSCs) which express ERα, ERß, PR, and FSHR, participate in the regular remodelling, and maintain life-long homeostasis. The present study aimed to delineate possible stem cell origins for various uteropathies. For this, mouse pups were treated with oestradiol or diethylstilbestrol and were studied for adult onset of various uteropathies. Treatment resulted in disrupted oestrous cycles, reduced uterine weights, and marked hyperplasia in both epithelial and myometrial compartments, and the stromal compartment was also affected. VSELs were increased in numbers as judged by flow cytometry and increased expression of transcripts specific for Oct-4A, Sox-2, and Nanog, but their further differentiation into a receptive endometrium was affected. Reduced 5-methyl cytosine expression suggested global hypomethylation and was associated with several oncogenic events including loss of tumour-suppressor genes (Pten, p53), dysregulated DNA mismatch repair axis, and repair enzymes. Stem cells were epigenetically altered and showed increased expression of DNMTs, loss of imprinting loci (Igf2-H19, Dlk1-Meg3), and Ezh2. Increased co-expression of CD166 and ALDHA1 with OCT-4 in stem cells was associated with increased Esr-2 and reduced Pr in the endometrium, while both were several folds upregulated in the myometrium. Study results suggest that various uteropathies ensue due to the dysfunction of tissue-resident stem cells and provide huge scope for further research.


Asunto(s)
Adenomiosis , Endometriosis , Humanos , Femenino , Ratones , Animales , Hiperplasia/metabolismo , Endometriosis/metabolismo , Útero/metabolismo , Células Madre Embrionarias
16.
J Ovarian Res ; 15(1): 115, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271409

RESUMEN

BACKGROUND: Fertility preservation and restoration in cancer patients/survivors is the need of present times when increased numbers of patients get cured of cancer but face infertility as a serious side effect. Resveratrol has beneficial effects on chemoablated ovaries and testes in mice but has failed to enter the clinics because of extremely poor bioavailability. The present study was undertaken to evaluate the protective and curative effects of Extremely active Resveratrol (XAR™)- a nano-formulation of resveratrol with significantly improved bioavailability- on mouse ovary and testis after chemotherapy. Effects of XAR™ and FSH were compared on stimulation of follicle growth in adult mice ovaries. XAR™ (25 mg/kg) was administered for two days prior to chemotherapy to study the protective effects on the mouse gonads. XAR™ was also administered for 14 days post chemoablation to study the regenerative effects. Besides effect on numbers of primordial and growing follicles and spermatogenesis, the effect of XAR™ was also evaluated on the transcripts specific for ovarian/testicular stem/progenitor/germ cells, their proliferation, differentiation, meiosis, and the antioxidant indices. RESULTS: Similar to FSH, XAR™ increased the numbers of primordial follicles (PF) as well as growing follicles. It protected the gonads from the adverse effects of chemotherapy and showed the ability to regenerate non-functional, chemoablated gonads. Besides stimulating follicle growth in adult ovaries similar to FSH, XAR™ also protected the testes from the adverse effects of chemotherapy and improved spermatogenesis. This was accompanied by improved anti-oxidant indices. CONCLUSIONS: The results of the present study potentiate the use of XAR™ in pilot clinical studies to protect gonadal function during oncotherapy and also regenerate non-functional gonads in cancer survivors by improving antioxidant indices and stem cell-based tissue regeneration.


Asunto(s)
Antineoplásicos , Testículo , Masculino , Femenino , Ratones , Animales , Ovario , Resveratrol/farmacología , Resveratrol/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Células Madre Embrionarias , Hormona Folículo Estimulante/farmacología , Antineoplásicos/efectos adversos
18.
Stem Cell Rev Rep ; 18(8): 2912-2927, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35834052

RESUMEN

Polycystic ovarian syndrome (PCOS) is a common global cause of anovulatory infertility but underlying etiology leading to PCOS still remains elusive. Fetal and perinatal endocrine disruption reportedly affects germ cell nests (GCN) breakdown, meiosis, and primordial follicle (PF) assembly with unassembled oocytes in neonatal ovaries. We recently reported that very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) express ERα, ERß and FSHR, undergo distinct cyclic changes and neo-oogenesis encompassing GCN formation, meiosis, and primordial follicle (PF) assembly on regular basis in adult mice ovaries and these GCN are arrested in pre-meiotic or early meiotic stage in aged ovaries. Present study was undertaken to evaluate whether neonatal exposure to endocrine disruption (estradiol E2 or diethylstilbestrol DES) affects ovarian stem cells and their differentiation (neo-oogenesis) and PF assembly in adult 100 days old ovaries. Neonatal exposure to E2 resulted in typical features of PCOS including hyperandrogenism, infertility, increased stromal compartment, absent corpus lutea, and cystic follicles whereas DES treated ovaries showed rapid recruitment of follicles in young ovaries and multi-ovular/cystic follicles. Ovary surface epithelial cells smears showed large numbers of growth-arrested GCN in zygotene/pachytene with increased expression of Mlh-1 and Scp-1 suggesting defects at synapsis and recombination stages during prophase-1 of meiosis. Being immortal and expression of ERα and ERß makes VSELs directly vulnerable to carry developmental endocrine insults to adult life. Dysfunction of VSELs/OSCs possibly results in oocyte defects observed in our study in PCOS/POI besides the widely reported defects in granulosa cells.


Asunto(s)
Infertilidad , Síndrome del Ovario Poliquístico , Insuficiencia Ovárica Primaria , Humanos , Embarazo , Femenino , Ratones , Animales , Receptor alfa de Estrógeno , Receptor beta de Estrógeno/genética , Células Madre Embrionarias
19.
Stem Cell Res Ther ; 13(1): 243, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676718

RESUMEN

BACKGROUND: Incidence of type II germ cell tumors (T2GCT) has increased in young men possibly due to fetal/perinatal exposure to estrogenic compounds. Three-fold increased incidence of T2GCT was reported in men exposed in utero to diethylstilbestrol (DES). T2GCT is a development-related disease arising due to blocked differentiation of gonocytes into spermatogonia in fetal testes which survive as germ cell neoplasia in situ (GCNIS) and initiate T2GCT. In our earlier study, T2GCT-like features were observed in 9 out of 10 adult, 100-day-old mice testes upon neonatal exposure to DES (2 µg/pup/day on days 1-5). Neonatal DES exposure affected testicular very small embryonic-like stem cells (VSELs) and spermatogonial stem cells and resulted in infertility, reduced sperm counts and tumor-like changes leading to our postulate that testicular dysgenesis syndrome possibly has a stem cell basis. The present study was undertaken to further characterize testicular tumor in mice testes. METHODS: DES-exposed mice pups (n = 70) were studied on D100 and after 12 months to understand how T2GCT progresses. Besides histological studies, a carefully selected panel of markers were studied by immuno-fluorescence and qRT-PCR. RESULTS: DES resulted in either atrophied or highly vascularized, big-sized testes and extra-testicular growth was also observed. GCNIS-like cells with big, vacuolated cytoplasm and increased expression of OCT-4, SSEA-1, SCA-1 and CD166 (cancer stem cells marker) along with reduced c-KIT, MVH and PTEN were evident. Global hypomethylation was found associated with altered expression of Dnmts, Igf2-H19 and Dlk-Meg3 imprinted genes along with reduced expression of Ezh2, cell cycle regulator p57KIP2 and Meg3; however, Pten remained unaltered. Increased expression of PCNA and Ki67 was observed in concert with complete lack of SOX-9 suggesting Sertoli cells independent proliferation. CONCLUSIONS: Mouse model for T2GCT is described which will have immense potential to understand cancer initiation, cancer stem cells and also to develop effective therapies in future. T2GCT initiates from tissue-resident, pluripotent VSELs due to their altered epigenome. Neonatal exposure to DES blocks differentiation (spermatogenesis) and VSELs get transformed into CD166 positive cancer stem cells that undergo excessive self-renewal and initiate cancer in adult life challenging existing concept of fetal origin of T2GCT.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Células Madre Pluripotentes , Neoplasias Testiculares , Animales , Células Madre Embrionarias , Humanos , Masculino , Ratones , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias de Células Germinales y Embrionarias/patología , Células Madre Pluripotentes/metabolismo , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patología , Testículo/metabolismo
20.
Stem Cell Rev Rep ; 18(5): 1603-1613, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35641711

RESUMEN

Various types of stem cells are being researched upon to exploit their potential for regenerative medicine including pluripotent human embryonic stem (hES) cells derived from spare human embryos, induced pluripotent stem (iPS) cells by reprogramming somatic cells to a pluripotent state and multipotent mesenchymal stem/stromal cells (MSCs) obtained in vitro from multiple tissues. More than 50 independent groups have reported another novel population of pluripotent stem cells in adult tissues termed very small embryonic-like stem cells (VSELs). VSELs are developmentally linked to primordial germ cells, which rather than giving rise to the germ cells and later ceasing to exist, survive throughout life in multiple organs along with tissue-specific adult stem cells better described as lineage-restricted, tissue-committed progenitors with limited plasticity. VSELs survive total body irradiation in bone marrow, oncotherapy in the gonads, bilateral ovariectomy in the uterus and partial pancreatectomy in the pancreas of mice and participate in the regeneration of multiple organs under normal physiological conditions. VSELs and tissue-specific progenitor cells work together in a subtle manner, maintain life-long tissue homeostasis and their dysfunction leads to various pathologies including cancer. However, due to their quiescent state, VSELs have invariably eluded lineage-tracing studies reported so far. Present article reviews novel insights into VSELs biology and how VSELs enriched from GFP (green fluorescent protein) mice have enabled to delineate their role in various biological processes in vivo. VSELs biology needs to be understood in-depth as this alone will help evolve the field of regenerative medicine and win the war against cancer.


Asunto(s)
Células Madre Embrionarias , Neoplasias , Biología , Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA