RESUMEN
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 µg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
RESUMEN
This study is conducted to identify the microbial architecture and its functional capacity in the Asian population via the whole metagenomics approach. A brief comparison of the Asian countries namely Malaysia, India, China, and Thailand, was conducted, giving a total of 916 taxa under observation. Results show a close representation of the taxonomic diversity in the gut microbiota of Malaysia, India, and China, where Bacteroidetes, Firmicutes, and Actinobacteria were more predominant compared to other phyla. Mainly due to the multi-racial population in Malaysia, which also consists of Malays, Indian, and Chinese, the population tend to share similar dietary preferences, culture, and lifestyle, which are major influences that shapes the structure of the gut microbiota. Moreover, Thailand showed a more distinct diversity in the gut microbiota which was highly dominated by Firmicutes. Meanwhile, functional profiles show 1034 gene families that are common between the four countries. The Malaysia samples are having the most unique gene families with a total of 67,517 gene families, and 51 unique KEGG Orthologs, mainly dominated by the metabolic pathways, followed by microbial metabolism in diverse environments. In conclusion, this study provides some general overview on the structure of the Asian gut microbiota, with some additional highlights on the Malaysian population. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03671-3.
RESUMEN
An infectious disease is the most apprehensive problem in aquaculture as it can lead to high mortality in aquatic organisms and massive economic loss. Even though significant progress has been accomplished in therapeutic, prevention, and diagnostic using several potential technologies, more robust inventions and breakthroughs should be achieved to control the spread of infectious diseases. MicroRNA (miRNA) is an endogenous small non-coding RNA that post-transcriptionally regulates the protein-coding genes. It involves various biological regulatory mechanisms in organisms such as cell differentiation, proliferation, immune responses, development, apoptosis, and others. Furthermore, an miRNA also acts as a mediator to either regulate host responses or enhance the replication of diseases during infection. Therefore, the emergence of miRNAs could be potential candidates for the establishment of diagnostic tools for numerous infectious diseases. Interestingly, studies have revealed that miRNAs can be used as biomarkers and biosensors to detect diseases, and can also be used to design vaccines to attenuate pathogens. This review provides an overview of miRNA biogenesis and specifically focuses on its regulation during infection in aquatic organisms, especially on the host immune responses and how miRNAs enhance the replication of pathogens in the organism. In addition to that, we explored the potential applications, including diagnostic methods and treatments, that can be employed in the aquaculture industry.
Asunto(s)
Técnicas Biosensibles , Enfermedades Transmisibles , MicroARNs , Humanos , MicroARNs/genética , Acuicultura , Organismos AcuáticosRESUMEN
Blastocystis sp. is an enteric protistan parasite that affects individuals worldwide with gastrointestinal symptoms such as abdominal discomfort, diarrhea, and flatulence. However, its pathogenicity is controversial due to its presence among asymptomatic individuals. Blastocystis sp. subtype 3 (ST3) is the most prevalent subtype among humans that have been associated with irritable bowel syndrome (IBS), Crohn's disease, ulcerative colitis, and colorectal cancer. Axenization of the parasite has been shown to impede its growth thus revealing the importance of accompanying bacteria in ensuring Blastocystis sp. survival. This study aims to identify the influence of accompanying bacteria on the growth of Blastocystis sp. ST3. Blastocystis sp. cultures were treated with Meropenem, Vancomycin, and Amoxicillin-Clavulanic acid (Augmentin). Bacteria-containing supernatant of antibiotic-treated and control cultures were isolated and identified through 16 s rRNA sequencing. Morphological changes of antibiotic-treated Blastocystis sp. ST3 were also observed. The cultures treated with meropenem and augmentin exhibited opposing effects with reduced growth of isolates from symptomatic patients and a significant increase in asymptomatic isolates. Whereas, vancomycin-treated cultures had no difference in the growth of Blastocystis sp. ST3 isolates from symptomatic and asymptomatic patients. Isolates from symptomatic and asymtomatic patients had 6 and 2 distinct bacterial species identified with Proteus mirabilis as the common bacteria among both types of isolates. Morphologically, Blastocystis sp. ST3 cultures exposed to meropenem and augmentin demonstrated an increase in pre-cystic forms. These findings demonstrate the effects of accompanying bacteria on the growth of Blastocystis sp. ST3 that could translate into clinical manifestations observed among Blastocystis sp.-infected patients.
Asunto(s)
Infecciones por Blastocystis , Blastocystis , Humanos , Infecciones por Blastocystis/parasitología , Vancomicina , Meropenem , Combinación Amoxicilina-Clavulanato de Potasio , Antibacterianos/farmacología , Heces/parasitologíaRESUMEN
In recent years, shrimp aquaculture industry had grown significantly to become the major source of global shrimp production. Despite that, shrimp aquaculture production was impeded by various shrimp diseases over the past decades. Interestingly, different shrimp species demonstrated variable levels of immune strength and survival (immune-survival) ability towards different diseases, especially the much stronger immune-survival ability shown by the ancient shrimp species, Macrobrachium rosenbergii compared to other shrimp species. In this study, two important shrimp species, M. rosenbergii and Penaeus monodon (disease tolerant strain) (uninfected control and VpAHPND-infected) were compared to uncover the potential underlying genetic factors. The shrimp species were sampled, followed by RNA extraction and cDNA conversion. Five important immune-survival genes (C-type Lectin, HMGB, STAT, ALF3, and ATPase 8/6) were selected for PCR, sequencing, and subsequent genetics analysis. The overall genetic analyses conducted, including Analysis of Molecular Variance (AMOVA) and population differentiation, showed significant genetic differentiation (p<0.05) between different genes of M. rosenbergii and P. monodon. There was greater genetic divergence identified between HMGB subgroups of P. monodon (uninfected control and VpAHPND-infected) compared to other genes. Besides that, based on neutrality tests conducted, purifying selection was determined to be the main evolutionary driving force of M. rosenbergii and P. monodon with stronger purifying selection exhibited in M. rosenbergii genes. Potential balancing selection was identified for VpAHPND-infected HMGB subgroup whereas directional selection was detected for HMGB (both species) and ATPase 8/6 (only P. monodon) genes. The divergence times between M. rosenbergii and P. monodon genes were estimated through Bayesian molecular clock analysis, which were 438.6 mya (C-type Lectin), 1885.4 mya (HMGB), 432.6 mya (STAT), 448.1 mya (ALF3), and 426.4 mya (ATPase 8/6) respectively. In conclusion, important selection forces and evolutionary divergence information of immune-survival genes between M. rosenbergii and P. monodon were successfully identified.
Asunto(s)
Evolución Biológica , Penaeidae , Animales , Teorema de Bayes , Lectinas Tipo C/genética , Adenosina Trifosfatasas/genética , Proteínas HMGB , Penaeidae/genéticaRESUMEN
The emergence of disease in shrimp has governed much concern in food safety and security among consumers with the recent reports on hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP). The microsporidians present in shrimp remain a silent pathogen that prevents optimal shrimp growth. However, the biggest threat is in its food safety concerns, which is the primary focus in ensuring food biosecurity and biosafety. Hence, the objective of this review is to summarise the current knowledge of EHP and its infection in shrimp with food safety concerns. This paper provides an analysis of the diagnostic methods for detecting EHP infections in shrimp aquaculture. Interventions with current molecular biology and biotechnology would be the second approach to addressing EHP diseases. Finally, a systematic guideline for shrimp food safety using diagnostic and intervention is proposed. Thus, this review was aimed to shed light on effective methods for the diagnosis and prevention of EHP infection in shrimp. We also include information on molecular and genomics tools as well as innate immune biomolecules as future targets in the intervention strategies on the microsporidsosis life cycle in shrimp and its environment. Overall, this will result in reduced disease outbreaks in shrimp aquaculture, ensuring the shrimp food safety in the future.
RESUMEN
Rats (Rattus species) are the most notorious vertebrate pests in Malaysian oil palm plantations. Although many studies have been conducted on Asian rats, little attention has been paid to their species composition and phylogenetic relationships in oil palm plantations in Peninsular Malaysia. We determined the mitochondrial cytochrome oxidase subunit I (COI) gene sequence (708 bp) for 216 individual rats collected from five oil palm plantations in Peninsular Malaysia. Phylogenetic analysis in conjunction with comparison with sequences from the nucleotide sequence database revealed five distinct lineages in the Malaysian oil plantations: Rattus tiomanicus, Rattus argentiventer, Rattus exulans, Rattus tanezumi, and a taxon corresponding to the Malayan house rat, which was most frequently observed (â¼50%). The last taxon has traditionally been classified as a synonym of Rattus rattus (Rattus rattus diardii) or Rattus tanezumi, but our phylogenetic analysis placed it as an independent lineage, which is not particularly closely related to R. rattus or R. tanezumi, and which we refer to as Rattus diardii. The construction of the network showed that there is considerable genetic variation within the lineages of R. diardii and R tiomanicus, suggesting that these two species are native to the Malay Peninsula.
Asunto(s)
Complejo IV de Transporte de Electrones , Genes Mitocondriales , Ratas , Animales , Filogenia , Complejo IV de Transporte de Electrones/genética , Malasia , Variación GenéticaRESUMEN
Severe shrimp disease outbreaks have a destructive impact on shrimp aquaculture and its associated downstream food processing industries. Thus, it is essential to develop proper methods for shrimp disease control, which emphasizes the importance of food safety. In this study, we performed biochemical tests and gut microbiome analysis using uninfected control and Vp AHPND-infected Penaeus monodon samples. Biochemical tests were performed to assess the phenoloxidase (PO) activity, respiratory Burst (RB) activity, nitrite concentration, superoxide dismutase (SOD) activity, total hemocyte count (THC), and total protein concentrations. Overall, upregulations were detected in these biochemical tests, which showed the activation of the immune response in P. monodon during acute hepatopancreatic necrosis disease (AHPND) infection, especially at 6 hpi and 12 hpi. Besides that, shrimp gut samples were collected and pooled (n = 3), followed by DNA extraction, PCR amplification targeting the V3/V4 16S ribosomal RNA (rRNA) region, next-generation sequencing (NGS), and bioinformatics analysis. Proteobacteria was the most abundant phylum in both samples. The Rhodobacteraceae family and Maritimibacter genus were proposed to be vital forshrimp health maintenance. Vp AHPND bacterial colonization and secondary Vibrio infections were postulated to have occurred based on the higher abundances of Vibrionaceae family and Vibrio genus in the Vp AHPND-infected sample. Firmicutes phylum together with Photobacterium and Aliiroseovarius genera were inferred to be pathogenic or related factors of AHPND infections. In conclusion, physiology (immune response activation) and gut microbiome changes of disease tolerant P. monodon during AHPND infection were identified. Both biochemical tests and 16S rRNA analysis are proposed as a combined strategy for shrimp health diagnosis for ensuring shrimp health maintenance, disease control, and food safety.
RESUMEN
Diseases have remained the major issue for shrimp aquaculture industry for decades by which different shrimp species demonstrated alternative disease resistance or tolerance. However, there had been insufficient studies on the underlying host mechanisms of such phenomenon. Hence, in this study, the main objective involves gaining a deeper understanding into the functional importance of shrimp STAT gene from the aspects of expression, sequence, structure, and associated genes. STAT gene was selected primarily because of its vital signalling roles in stress, endocrine, and immune response. The differential gene expressions of Macrobrachium rosenbergii STAT (MrST) and Penaeus monodon STAT (PmST) under White Spot Syndrome Virus (WSSV) and Vibrio parahaemolyticus/VpAHPND infections were identified through qPCR analysis. Notably, during both pathogenic infections, MrST demonstrated significant gene expression down-regulations (during either early or later post-infection time points) whereas PmST showed only significant gene expression up-regulations. Important sequence conservation or divergence was highlighted through STAT sequence comparison especially amino acid alterations at 614 aa [K (Lysine) to E (Glutamic Acid)] and 629 aa [F (Phenylalanine) to V (Valine)] from PmST (AY327491.1) to PmST (disease tolerant strain). There were significant differences observed between in silico characterized structures of MrST and PmST proteins. Important functional differentially expressed genes (DEGs) in the aspects of stress, endocrine, immune, signalling, and structural were uncovered through comparative transcriptomic analysis. The DEGs associated with STAT functioning were identified including inositol 1,4,5-trisphosphate receptor, hsp90, caspase, ATP binding cassette transmembrane transporter, C-type Lectin, HMGB, ALF1, ALF3, superoxide dismutase, glutathione peroxidase, catalase, and TBK1. The main findings of this study are STAT differential gene expression patterns, sequence divergence, structural differences, and associated functional DEGs. These findings can be further utilized for shrimp health or host response diagnostic studies. STAT gene can also be proposed as a suitable candidate for future studies of shrimp innate immune enhancement.
Asunto(s)
Palaemonidae/genética , Penaeidae/genética , Factores de Transcripción STAT/genética , Vibrio parahaemolyticus/patogenicidad , Virus del Síndrome de la Mancha Blanca 1/patogenicidad , Sustitución de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Simulación por Computador , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Palaemonidae/virología , Penaeidae/virología , Conformación Proteica , Factores de Transcripción STAT/química , Transducción de SeñalRESUMEN
Invasive alien fish species have become a silent treat towards the ecosystem especially the native fish population in Malaysia. There has been a need to develop rapid identification methods that can aid management teams in identifying fish species that are not native to our ecosystem. Current visual identification methods are highly tedious and require time, delaying action towards curbing the invasion. The LAMP assay successfully identified six popular invasive fish species in Malaysia. None of the LAMP assays showed false positives and the Limit of Detection of the LAMP primers were highly sensitive and could detect DNA samples up to 1 × 10-15 ng/µl. The LAMP primers designed were highly specific to the target species and did not amplify non target species. DNA sequencing was done to ensure the accuracy of LAMP assay results. This study demonstrates that LAMP is a suitable tool in species identification efforts of invasive fish species in Malaysia.
Asunto(s)
Peces/genética , Agua Dulce , Especies Introducidas , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Malasia , Transiluminación , Rayos UltravioletaRESUMEN
Global shrimp aquaculture farmers have suffered major economic losses due to disease outbreaks. A notable shrimp disease is Acute Hepatopancreatic Necrosis Disease (AHPND), which is caused by a new strain of Vibrio parahaemolyticus bacteria (VpAHPND) that mainly inhabits the shrimp gut and damages the hepatopancreas. Fewer studies have investigated whether this disease will affect shrimp muscle functioning or cause any muscle damage. We challenged Penaeus monodon shrimp with VpAHPND bacteria using an immersion method. Expression of Dystrophin gene, an important regulatory gene for maintenance of muscle integrity, was quantified from muscle samples using qRT-PCR. Additional verification was conducted by determining calcium concentration and bta-miR-4286 and dre-miR-107b miRNAs expression. P. monodon dystrophin gene demonstrated the highest expression level during AHPND infection when muscle calcium concentration was detected at its lowest level at 6 h post-infection (hpi). The highest muscle calcium concentration, determined at 36 hpi, was supported by higher bta-miR-4286 miRNA expression and lower dre-miR-107b miRNA expression in VpAHPND-infected samples compared to uninfected samples at the same time point. We deduced an interactive relationship between dystrophin gene expression, calcium concentration, and miRNA expression in P. monodon muscle tissues triggered by the invading VpAHPND bacterium.
Asunto(s)
Calcio/metabolismo , Expresión Génica , MicroARNs/metabolismo , Penaeidae/fisiología , Vibrio parahaemolyticus/fisiología , Animales , Músculos/microbiología , Músculos/fisiología , Penaeidae/microbiologíaRESUMEN
Proteins have been increasingly suggested as suitable candidates for the fabrication of biological computers and other biomolecular-based electronic devices mainly due to their interesting structure-related intrinsic electrical properties. These natural biopolymers are environmentally friendly substitutes for conventional inorganic materials and find numerous applications in bioelectronics. Effective manipulation of protein biomolecules allows for accurate fabrication of nanoscaled device dimensions for miniaturized electronics. The prerequisite, however, demands an interrogation of its various electronic properties prior to understanding the complex charge transfer mechanisms in protein molecules, the knowledge of which will be crucial toward development of such nanodevices. One significantly preferred method in recent times involves the utilization of solid-state sensors where interactions of proteins could be investigated upon contact with metals such as gold. Therefore, in this work, proteins (hemoglobin and collagen) were integrated within a two-electrode system, and the resulting electronic profiles were investigated. Interestingly, structure-related electronic profiles representing semiconductive-like behaviors were observed. These characteristic electronic profiles arise from the metal (Au)-semiconductor (protein) junction, clearly demonstrating the formation of a Schottky junction. Further interpretation of the electronic behavior of proteins was done by the calculation of selected solid-state parameters. For example, the turn-on voltage of hemoglobin was measured to occur at a lower turn-on voltage, indicating the possible influence of the hem group present as a cofactor in each subunit of this tetrameric protein.
RESUMEN
BACKGROUND: The genus Onchocerca Diesing, 1841 includes species of medical importance, such as O. volvulus (Leuckart, 1893), which causes river blindness in the tropics. Recently, zoonotic onchocercosis has been reported in humans worldwide. In Japan, O. dewittei japonica Uni, Bain & Takaoka, 2001 from wild boars is a causative agent for this zoonosis. Many filarioid nematodes are infected with Wolbachia endosymbionts which exhibit various evolutionary relationships with their hosts. While investigating the filarial fauna of Borneo, we discovered an undescribed Onchocerca species in the bearded pig Sus barbatus Müller (Cetartiodactyla: Suidae). METHODS: We isolated Onchocerca specimens from bearded pigs and examined their morphology. For comparative material, we collected fresh specimens of O. d. dewittei Bain, Ramachandran, Petter & Mak, 1977 from banded pigs (S. scrofa vittatus Boie) in Peninsular Malaysia. Partial sequences of three different genes (two mitochondrial genes, cox1 and 12S rRNA, and one nuclear ITS region) of these filarioids were analysed. By multi-locus sequence analyses based on six genes (16S rDNA, ftsZ, dnaA, coxA, fbpA and gatB) of Wolbachia, we determined the supergroups in the specimens from bearded pigs and those of O. d. dewittei. RESULTS: Onchocerca borneensis Uni, Mat Udin & Takaoka n. sp. is described on the basis of morphological characteristics and its genetic divergence from congeners. Molecular characteristics of the new species revealed its close evolutionary relationship with O. d. dewittei. Calculated p-distance for the cox1 gene sequences between O. borneensis n. sp. and O. d. dewittei was 5.9%, while that between O. d. dewittei and O. d. japonica was 7.6%. No intraspecific genetic variation was found for the new species. Wolbachia strains identified in the new species and O. d. dewittei belonged to supergroup C and are closely related. CONCLUSIONS: Our molecular analyses of filarioids from Asian suids indicate that the new species is sister to O. d. dewittei. On the basis of its morphological and molecular characteristics, we propose to elevate O. d. japonica to species level as O. japonica Uni, Bain & Takaoka, 2001. Coevolutionary relationships exist between the Wolbachia strains and their filarial hosts in Borneo and Peninsular Malaysia.
Asunto(s)
Onchocerca , Oncocercosis/veterinaria , Porcinos/parasitología , Wolbachia , Animales , Coevolución Biológica , Clasificación , Genes Bacterianos , Genes de Helminto , Humanos , Onchocerca/anatomía & histología , Onchocerca/clasificación , Onchocerca/microbiología , Oncocercosis/transmisión , Oncocercosis Ocular/parasitología , Oncocercosis Ocular/transmisión , Filogenia , Enfermedades de los Porcinos , Simbiosis , Wolbachia/clasificación , Wolbachia/aislamiento & purificación , Zoonosis/transmisiónRESUMEN
The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
RESUMEN
BACKGROUND: Penaeus monodon is the second most widely cultured marine shrimp species in the global shrimp aquaculture industry. However, the growth of P. monodon production has been constantly impaired by disease outbreaks. Recently, there is a lethal bacterial infection, known as acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus AHPND strain (Vp AHPND), which led to mass mortalities in P. monodon. Unfortunately, there is still insufficient knowledge about the underlying immune response of P. monodon upon AHPND infection. The present study aims to provide an insight into the antibacterial immune response elicited by P. monodon hepatopancreas towards AHPND infection. METHODS: We have employed high-throughput RNA-Seq technology to uncover the transcriptome changes of P. monodon hepatopancreas when challenged with Vp AHPND. The shrimps were challenged with Vp AHPND through immersion method with dissected hepatopancreas samples for the control group (APm-CTL) and treatment group at 3 (APm-T3), 6 (APm-T6), and 24 (APm-T24) hours post-AHPND infection sent for RNA-Seq. The transcriptome de novo assembly and Unigene expression determination were conducted using Trinity, Tgicl, Bowtie2, and RSEM software. The differentially expressed transcripts were functionally annotated mainly through COG, GO, and KEGG databases. RESULTS: The sequencing reads generated were filtered to obtain 312.77 Mb clean reads and assembled into 48662 Unigenes. Based on the DEGs pattern identified, it is inferred that the PAMPs carried by Vp AHPND or associated toxins are capable of activating PRRs, which leads to subsequent pathway activation, transcriptional modification, and antibacterial responses (Phagocytosis, AMPs, proPO system). DAMPs are released in response to cell stress or damage to further activate the sequential immune responses. The comprehensive interactions between Vp AHPND, chitin, GbpA, mucin, chitinase, and chitin deacetylase were postulated to be involved in bacterial colonization or antibacterial response. CONCLUSIONS: The outcomes of this research correlate the different stages of P. monodon immune response to different time points of AHPND infection. This finding supports the development of biomarkers for the detection of early stages of Vp AHPND colonization in P. monodon through host immune expression changes. The potential genes to be utilized as biomarkers include but not limited to C-type lectin, HMGB1, IMD, ALF, serine proteinase, and DSCAM.
RESUMEN
Increasing incidences of dengue have become a global health threat with major clinical manifestation including high fever and gastrointestinal symptoms. These symptoms were also expressed among Blastocystis sp. infected individuals, a parasite commonly seen in human stools. This parasite has been previously reported to replicate faster upon exposure to high temperature. The present study is a hospitalized-based cross-sectional study involved the collection of faecal sample from dengue patients. Stool examination was done by in vitro cultivation to isolate Blastocystis sp. Growth pattern of all the positive isolates were analyzed to identify the multiplication rate of Blastocystis sp. isolated from dengue patients. Distribution of Blastocystis sp. among dengue patients was 23.6%. Dengue patients who were positive for Blastocystis sp. infection denoted a significantly higher fever rate reaching 38.73°C (p<0.05) compared to the non-Blastocystis sp. infected patients (38.44°C). It was also found that Blastocystis sp. infected patients complained of frequenting the toilet more than five times a day (p<0.05) compared to those who were non-Blastocystis sp. infected. At the same time, the duration of hospitalization was significantly longer (p<0.05) for Blastocystis sp. infected dengue patients compared to the non-Blastocystis sp. infected patients. Besides, Blastocystis sp. isolated from dengue patients (in vivo thermal stress) showed a higher growth rate compared to the non-dengue isolated which was exposed to high temperature (in vitro thermal stress). Our findings suggest that presence of Blastocystis sp. during dengue infection could trigger the increase of temperature which could be due to highly elevated pro inflammatory cytokines by both parasitic and virus infection. This could justify why the temperature in Blastocystis sp. infected dengue patients is higher compared to the non-Blastocystis sp. infected patients. Higher temperature could have triggered a greater parasite multiplication rate that contributed to the aggravation of the gastrointestinal symptoms.
Asunto(s)
Infecciones por Blastocystis/metabolismo , Dengue/complicaciones , Dengue/economía , Adulto , Blastocystis/aislamiento & purificación , Blastocystis/metabolismo , Infecciones por Blastocystis/parasitología , Estudios Transversales , Dengue/microbiología , Heces/parasitología , Femenino , Fiebre , Enfermedades Gastrointestinales , Costos de la Atención en Salud , Humanos , Malasia , MasculinoRESUMEN
We sequenced the genome of Vibrio parahaemolyticus strain ST17.P5-S1, isolated from Penaeus vannamei cultured in the east coast of Peninsular Malaysia. The strain contains several antibiotic resistance genes and a plasmid encoding the Photorhabdus insect-related (Pir) toxin-like genes, pirAvp and pirBvp, associated with acute hepatopancreatic necrosis disease (AHPND).
RESUMEN
We report the first draft genome sequence of a Vibrio parahaemolyticus strain (Vp AHPND), which causes acute hepatopancreatic necrosis disease (AHPND) in Penaeus monodon. The strain has a pVA1-like plasmid carrying pirAvp and pirBvp genes. Whole-genome comparisons revealed >98% similarity to Vp AHPND isolates from Thailand, Mexico, and Vietnam.
RESUMEN
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
RESUMEN
BACKGROUND: Intense landscaping often alters the plant composition in urban areas. Knowing which plant species that pollinators are visiting in urban areas is necessary for understanding how landscaping impacts biodiversity and associated ecosystem services. The cave nectar bat, Eonycteris spelaea, is an important pollinator for many plants and is often recorded in human-dominated habitats. Previous studies of the diet of E. spelaea relied on morphological identification of pollen grains found in faeces and on the body of bats and by necessity disregarded other forms of digested plant material present in the faeces (i.e., plant juice and remnants). The main objective of this study was to examine the diet of the nectarivorous bat, E. spelaea, roosting in an urban cave at Batu Caves, Peninsular Malaysia by identifying the plant material present in the faeces of bats using DNA metabarcoding. METHODS: Faeces were collected under the roost of E. spelaea once a week from December 2015 to March 2016. Plant DNA was extracted from the faeces, Polymerase chain reaction (PCR) amplified at ITS2 and rbcL regions and mass sequenced. The resultant plant operational taxonomic units were searched against NCBI GenBank for identification. RESULTS: A total of 55 species of plants were detected from faeces of E. spelaea including Artocarpus heterophyllus, Duabanga grandiflora and Musa spp. which are likely to be important food resources for the cave nectar bat. DISCUSSION: Many native plant species that had not been reported in previous dietary studies of E. spelaea were detected in this study including Bauhinia strychnoidea and Urophyllum leucophlaeum, suggesting that E. spelaea remains a crucial pollinator for these plants even in highly disturbed habitats. The detection of many introduced plant species in the bat faeces indicates that E. spelaea are exploiting them, particularly Xanthostemon chrysanthus, as food resources in urban area. Commercial food crops were detected from all of the faecal samples, suggesting that E. spelaea feed predominantly on the crops particularly jackfruit and banana and play a significant role in pollination of economically important plants. Ferns and figs were also detected in the faeces of E. spelaea suggesting future research avenues to determine whether the 'specialised nectarivorous' E. spelaea feed opportunistically on other parts of plants.