Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Heliyon ; 10(17): e36895, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286085

RESUMEN

Essential oils are key ingredients in the development of edible films and provide a diverse approach to improving food preservation, as well as sensory qualities. The pectin and kappa-carrageenan composite films were obtained by adding peppermint essential oil in different quantities. The films after their fabrication were thoroughly evaluated for their attributes, which included mechanical, barrier, optical, chemical, thermal, and antioxidant properties. The visual assessment of the films demonstrated that PEO-loaded films showed a uniform, homogenous, and slightly yellowish appearance. There was an increase in the thickness (0.045 ± 0.006 to 0.060 ± 0.008 mm), elongation at break (12.73 ± 0.74 to 25.05 ± 1.33 %), and water vapor permeability (0.447 ± 0.014 to 0.643 ± 0.014 (g*mm)/(m2*h*kPa)) was observed with the addition of PEO. However, tensile strength (45.84 ± 3.69 to 29.80 ± 2.10 MPa) and moisture content (25.83 ± 0.046 to 21.82 ± 0.23 %) decreased with the incorporation of PEO. Furthermore, thermal and antioxidant properties were enhanced by the inclusion of PEO. The presented investigation can be employed to synthesize food packaging material with antioxidant properties with potential applications in food packaging.

4.
Toxicol Res (Camb) ; 13(4): tfae098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38957785

RESUMEN

Background: Alzheimer's disease (AD) presents as a widespread neurodegenerative condition impacting over 55 million individuals globally, with an annual rise of 10 million new cases. Despite its staggering prevalence, the absence of a definitive cure establishes the need for a revisit. Methods: We explore the alternative strategies, focusing on the potential therapeutic efficacy of ethanolic extracts derived from the fruit and leaf of Ficus racemosa Linn. Results: The investigation comprehensively explores pharmacognostic, phytochemical, toxicological, and pharmacological characteristics. In addition to pharmacognostic and physicochemical analyses, toxicological evaluations conducted on experimental animals demonstrated the innocuous nature of the ethanolic extracts (from both fruit and leaf) of F. racemosa, as evidenced by assessments of hemocompatibility, oxidative parameters, and vital organ histology. Phytochemical profiling via GC-MS identified 48 and 80 phytoconstituents in the fruit and leaf extracts, respectively. These constituents were screened for bioactive potential using the "Lipinski Rule of Five," resulting in the selection of 25 and 33 constituents from fruit and leaf extracts, respectively. Subsequent molecular docking studies against the AChE enzyme revealed promising interactions of the selected phytoconstituents. Furthermore, the top-scoring phytoconstituents were subjected to in silico screening to assess their interactions with ß- and γ-secretase enzymes, in addition to the AChE enzyme. The cumulative findings substantiate the therapeutic utility of the plant extracts, particularly in the context of AD. Conclusion: In conclusion, our investigation highlights the promising therapeutic potential of selected phytoconstituents derived from ethanolic extracts of F. racemosa in mitigating AD pathology by targeting key enzyme sites such as AChE, ß-, and γ-secretase.

5.
Heliyon ; 10(11): e31671, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882278

RESUMEN

The study examined the antimicrobial and antioxidant potential of pure Acetyl-11-keto-ß-boswellic acid (AKBA), boswellic acid (70%) and AKBA loaded nanoparticles as topical polymeric films. The optimized concentration (0.05 % w/v) of pure AKBA, boswellic acid (BA), and AKBA loaded silver nanoparticles were used to study its impact on film characteristics. Carboxymethyl cellulose (CMC), sodium alginate (SA), and gelatin (Ge) composite films were prepared in this study. The polymeric films were evaluated for their biological (antioxidant and antimicrobial activities) and mechanical characteristics such as tensile strength (TS) and elongation (%). Moreover, other parameters including water barrier properties and color attributes of the film were also evaluated. Furthermore, assessments were conducted using analytical techniques like FTIR, XRD, and SEM. Surface analysis revealed that AgNP precipitation led to a few particles in the film structure. Overall, the results indicate a relatively consistent microstructure. Moreover, due to the addition of AKBA, BA, and AgNPs, a significant decrease in TS, moisture content, water solubility, and water vapor permeation was observed. The films transparency also showed a decreasing trend, and the color analysis revealed decreasing yellowness (b*) of the films. Importantly, a significant increase in antioxidant activity against DPPH free radicals and ABTS cations was observed in the CSG films. Additionally, the AgNP-AKBA loaded films displayed significant antifungal activity against C. albicans. Moreover, the molecular docking analysis revealed the inter-molecular interactions between the AKBA, AgNPs, and composite films. The docking results indicate good binding of AKBA and silver nanoparticles with gelatin and carboxymethyl cellulosemolecules. In conclusion, these polymeric films have potential as novel materials with significant antioxidant and antifungal activities.

6.
Int J Biol Macromol ; 271(Pt 1): 132354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750852

RESUMEN

The utilization of biopolymer-based food packaging holds significant promise in aligning with sustainability goals and enhancing food safety by offering a renewable, biodegradable, and safer alternative to traditional synthetic polymers. However, these biopolymer-derived films often exhibit poor barrier and mechanical properties, potentially limiting their commercial viability. Desirable barrier properties, such as moisture and oxygen resistance, are critical for preserving and maintaining the quality of packaged food products. This review comprehensively explores different traditional and advance methodologies employed to access the barrier properties of edible films. Additionally, this review thoroughly examines various approaches aimed at enhancing the barrier properties of edible films, such as the fabrication of multilayer films, the selection of biopolymers for composite films, as well as the integration of plasticizers, crosslinkers, hydrophobic agents, and nanocomposites. Moreover, the influence of process conditions, such as preparation techniques, homogenization, drying conditions, and rheological behavior, on the barrier properties of edible films has been discussed. The review provides valuable insights and knowledge for researchers and industry professionals to advance the use of biopolymer-based packaging materials and contribute to a more sustainable and food-safe future.


Asunto(s)
Películas Comestibles , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Biopolímeros/química , Nanocompuestos/química , Permeabilidad , Plastificantes/química
8.
Heliyon ; 10(7): e29044, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601602

RESUMEN

Cloud computing has emerged as a transformative force in healthcare and biomedical sciences, offering scalable, on-demand resources for managing vast amounts of data. This review explores the integration of cloud computing within these fields, highlighting its pivotal role in enhancing data management, security, and accessibility. We examine the application of cloud computing in various healthcare domains, including electronic medical records, telemedicine, and personalized patient care, as well as its impact on bioinformatics research, particularly in genomics, proteomics, and metabolomics. The review also addresses the challenges and ethical considerations associated with cloud-based healthcare solutions, such as data privacy and cybersecurity. By providing a comprehensive overview, we aim to assist readers in understanding the significance of cloud computing in modern medical applications and its potential to revolutionize both patient care and biomedical research.

9.
ACS Omega ; 9(8): 9003-9012, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434887

RESUMEN

The trends in food packaging technologies are shifting toward utilizing natural and environmentally friendly materials prepared from biopolymers such as kappa carrageenan to replace synthetic polymers. In the current study, varying amounts (0.1, 0.2, and 0.3%) of grapefruit essential oil (GFO) were incorporated in kappa carrageenan-based edible films to improve their physicochemical properties. The developed film samples were characterized for their barrier, mechanical, morphological, optical, thermal, antioxidant, and biodegradable properties. The results obtained showed that the tensile strength of the carrageenan films enhanced significantly from 65.20 ± 4.71 to 98.21 ± 6.35 MPa with the incorporation of GFO in a concentration-dependent manner. FTIR and SEM analysis confirmed the intermolecular bonding between carrageenan and GFO, resulting in the formation of compact films. Incorporating GFO significantly enhanced the thermal resistance of oil-loaded films, as confirmed by TGA, DSC, and DTG analysis. The addition of GFO led to a substantial increase in the radical scavenging activity of the films, as evidenced by the DPPH and ABTS assays. Furthermore, the developed films were biodegradable in soil and seawater environments, indicating their potential as a sustainable alternative to traditional plastics. Findings demonstrated that GFO can be used as a natural antioxidant agent in kappa carrageenan-based films for potential applications in food packaging.

10.
Int J Hypertens ; 2024: 2430147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410720

RESUMEN

The lipid-based drug delivery system (LBDDS) is a well-established technique that is anticipated to bring about comprehensive transformations in the pharmaceutical field, impacting the management and administration of drugs, as well as treatment and diagnosis. Various LBDDSs verified to be an efficacious mechanism for monitoring hypertension systems are SEDDS (self-nano emulsifying drug delivery), nanoemulsion, microemulsions, vesicular systems (transferosomes and liposomes), and solid lipid nanoparticles. LBDDSs overcome the shortcomings that are associated with antihypertensive agents because around fifty percent of the antihypertensive agents experience a few drawbacks including short half-life because of hepatic first-pass metabolism, poor aqueous solubility, low permeation rate, and undesirable side effects. This review emphasizes antihypertensive agents that were encapsulated into the lipid carrier to improve their poor oral bioavailability. Incorporating cutting-edge technologies such as nanotechnology and targeted drug delivery, LBDDS holds promise in addressing the multifactorial nature of hypertension. By fine-tuning drug release profiles and enhancing drug uptake at specific sites, LBDDS can potentially target renin-angiotensin-aldosterone system components, sympathetic nervous system pathways, and endothelial dysfunction, all of which play crucial roles in hypertension pathophysiology. The future of hypertension management using LBDDS is promising, with ongoing reviews focusing on precision medicine approaches, improved biocompatibility, and reduced toxicity. As we delve deeper into understanding the intricate mechanisms underlying hypertension, LBDDS offers a pathway to develop next-generation antihypertensive therapies that are safer, more effective, and tailored to individual patient needs.

11.
Heliyon ; 10(3): e25501, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371972

RESUMEN

This research focused on the development of films based on pectin and xanthan gum composite loaded with different concentrations of grapefruit essential oil (GFO). The fabricated films were characterized to assess the effect of GFO on the structural, mechanical, barrier, chemical, and antioxidant properties. The addition of GFO enhanced the functional properties of the films, as confirmed by FTIR analysis showing molecular interactions within the film matrix. SEM observations revealed that films with higher GFO content had a smoother, more compact structure with uniform oil distribution. Films loaded with oil demonstrated enhanced water resistance, as their decreased permeability ranged from 0.733 ± 0.009 to 0.561 ± 0.020 (g mm)/(m2.h.kPa). Additionally, these films showed a notable increase in tensile strength, ranging from 2.91 ± 0.19 to 8.55 ± 0.62 MPa. However, the addition of oil led to a reduction in the elongation at break of the films, which decreased from 52.84 ± 3.41 % to 12.68 ± 1.52 %, and a decline in transparency from 87.57 ± 0.65 % to 76.18 ± 1.12 %. Fabricated films exhibited enhanced antioxidant properties, as evidenced by increased DPPH• and ABTS•+ radical scavenging activities with the addition of GFO. The findings of the current study suggest that GFO is an effective natural additive for enhancing the physiochemical properties of pectin and xanthan gum-based films, making them more suitable for food packaging applications.

12.
Int J Biol Macromol ; 264(Pt 2): 130463, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423442

RESUMEN

Sodium tripolyphosphate (STPP), an inorganic and non-toxic polyphosphate, has potential applications as a crosslinking agent in the fabrication of edible films. This study utilized STPP in the development of sodium alginate-chitosan composite films, with a focus on their suitability for food packaging applications. The results indicate that the incorporation of STPP led to an increase in film thickness (from 0.048 ± 0.004 to 0.078 ± 0.008 mm), elongation at break (from 11.50 ± 1.49 % to 15.88 ± 2.14 %), water permeation (from 0.364 ± 0.010 to 0.521 ± 0.021 gmm/(m2h*kPa)), and moisture content (from 25.98 ± 0.20 % to 28.12 ± 0.17 %). In contrast, there was a decrease in tensile strength (from 30.23 ± 2.08 to 25.60 ± 1.22 MPa) and swelling index (from 752.9 ± 17.1 to 533.5 ± 8.9 %). Scanning electron microscopy (SEM) analysis revealed the formation of distinctive needle-like microcrystals with the incorporation of STPP. Fourier-transform infrared spectroscopy (FTIR) analysis indicated intermolecular interactions between STPP and the film-forming biopolymers. The data obtained from Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) demonstrated enhanced thermal stability of STPP-loaded films at elevated temperatures. Furthermore, the films exhibited increased DPPH scavenging activity with the addition of STPP. This study underscores the potential of STPP as a crosslinking agent for the development of composite edible films, suggesting applications in the field of food packaging.


Asunto(s)
Alginatos , Quitosano , Alginatos/química , Quitosano/química , Resistencia a la Tracción , Polifosfatos , Embalaje de Alimentos
13.
Food Sci Nutr ; 12(2): 1056-1066, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370062

RESUMEN

Boswellia sacra and its derivatives exhibit notable bioactive properties, which have been the subject of extensive scientific research; however, their potential applications in food packaging remain largely untapped. In the current study, cellulose, sodium alginate, and gelatin composite edible films were fabricated with the addition of different concentrations (0.2% and 0.3%) of the ethanolic fraction of Boswellia sacra oleo gum resin (BSOR). The resultant films were examined for their physical, chemical, mechanical, barrier, optical, and antioxidant properties. Moreover, the films were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) to study the impact of incorporating BSOR on the morphological, crystalline, and chemical properties of the films. The addition of BSOR increased the film thickness (0.026-0.08 mm), water vapor permeability (0.210-0.619 (g.mm)/(m2.h.kPa), and the intensity of the yellow color (3.01-7.20) while reducing the values of both tensile strength (6.67-1.03 MPa) and elongation at break (83.50%-48.81%). SEM and FTIR analysis confirmed the interaction between the BSOR and film-forming components. The antioxidant properties of the edible films were significantly increased with the addition of BSOR. The comprehensive findings of the study demonstrated that BSOR possesses the potential to serve as an efficient natural antioxidant agent in the fabrication of edible films.

14.
Heliyon ; 10(2): e24210, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38304764

RESUMEN

Plasticizers are employed to stabilize films by safeguarding their physical stability and avoiding the degradation of the loaded therapeutic drug during processing and storage. In the present study, the plasticizer effect (glycerol) was studied on bioadhesive films based on sodium alginate (SA), carboxymethyl cellulose (CMC) and gelatin (GE) polymers loaded with amphotericin B (AmB). The main objective of the current study was to assess the morphological, mechanical, thermal, optical, and barrier properties of the films as a function of glycerol (Gly) concentration (0.5-1.5 %) using different techniques such as Scanning Electron Microscope (SEM), Texture analyzer (TA), Differential Scanning Calorimeter (DSC), X-Ray Diffraction (XRD), and Fourier Transforms Infrared Spectroscopy (FTIR). The concentration increase of glycerol resulted in an increase in Water Vapor Permeability (WVP) (0.187-0.334), elongation at break (EAB) (0.88-35.48 %), thickness (0.032-0.065 mm) and moisture level (17.5-41.76 %) whereas opacity, tensile strength (TS) (16.81-0.86 MPa), and young's modulus (YM) (0.194-0.002 MPa) values decreased. Glycerol incorporation in the film-Forming solution decreased the brittleness and fragility of the films. Fourier Transform Infrared (FTIR) spectra showed that intermolecular hydrogen bonding occurred between glycerol and polymers in plasticized films compared to control films. Furthermore, molecular docking was applied to predict the binding interactions betweem AmB, CMC, gelatin, SA and glycerol, which further endorsed the stabilizing effects of glycerol in the complex formation between AmB, CMC, SA, and gelatin. The Findings of the current study demonstrated that this polymeric blend could be used to successfully prepare bioadhesive films with glycerol as a plasticizer.

15.
Heliyon ; 10(1): e23790, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205318

RESUMEN

In the past few decades, the medicinal properties of plants and their effects on the human immune system are being studied extensively. Plants are an incredible source of traditional medicines that help cure various diseases, including altered immune mechanisms and are economical and benign compared to allopathic medicines. Reported data in written documents such as Traditional Chinese medicine, Indian Ayurvedic medicine support the supplementation of botanicals for immune defense reactions in the body and can lead to safe and effective immunity responses. Additionally, some botanicals are well-identified as magical herbal remedies because they act upon the pathogen directly and help boost the immunity of the host. Chemical compounds, also known as phytochemicals, obtained from these botanicals looked promising due to their effects on the human immune system by modulating the lymphocytes which subsequently reduce the chances of getting infected. This paper summarises most documented phytochemicals and how they act on the immune system, their properties and possible mechanisms, screening conventions, formulation guidelines, comparison with synthetic immunity-enhancers, marketed immunity-boosting products, and immune-booster role in the ongoing ghastly corona virus wave. However, it focuses mainly on plant metabolites as immunomodulators. In addition, it also sheds light on the current advancements and future possibilities in this field. From this thorough study, it can be stated that the plant-based secondary metabolites contribute significantly to immunity building and could prove to be valuable medicaments for the design and development of novel immunomodulators even for a pandemic like COVID-19.

16.
Int J Biol Macromol ; 261(Pt 1): 129698, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272421

RESUMEN

The present study aimed to develop food packaging films by using a combination of pectin (PE) and sodium alginate (SA) enriched with Acetyl-11-keto-beta-boswellic acid (AKBA) as a functional or active ingredient. The fabricated films underwent comprehensive evaluation of their morphological, chemical, mechanical, barrier, optical, thermal, antioxidant, and antimicrobial properties. SEM and FTIR analysis showed that AKBA had good compatibility with film-forming components. The AKBA-loaded film samples exhibited a decrease in their barrier properties and tensile strength, but enhancements in both elongation at break and thickness values was observed. With the addition of AKBA, a significant increase (p < 0.05) in the ultraviolet barrier properties of the films and total colour variation (ΔE) was observed. TGA analysis of the films unveiled an improvement in thermal resistance with the incorporation of AKBA. Moreover, the films loaded with AKBA exhibited potent antioxidant activity in the ABTS and DPPH assay methods. Disk diffusion analysis showed the antimicrobial activity of AKBA-loaded films against P. aeruginosa, highlighting the potential of AKBA as a natural antimicrobial agent for the safety of food products. The results demonstrate the practical application of PE and SA active films loaded with AKBA, particularly within the food packaging industry.


Asunto(s)
Antiinfecciosos , Triterpenos , Alginatos/química , Pectinas , Antiinfecciosos/farmacología , Antiinfecciosos/química , Triterpenos/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Embalaje de Alimentos/métodos
17.
Int J Biol Macromol ; 254(Pt 3): 128045, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37956812

RESUMEN

In the current study, sodium caseinate and chitosan-based composite edible films were developed with the incorporation of black pepper (Piper nigrum) essential oil (BPO) in various concentrations (0.05, 0.1 and 0.15 %) for potential food packaging applications. The chemical composition of BPO was determined using GCMS and the major compound detected were ß-caryophyllene, limonene, ß-phellandren, pinene, copaene and α-humulene. The addition of BPO resulted in an increase in the thickness, EAB, WVP, moisture content and swelling index values of the films; however, the TS and water solubility decreased. The inclusion of BPO led to a substantial enhancement in the DPPH and ABTS radical scavenging capabilities of the edible films. SEM micrographs demonstrated intermolecular interaction between BPO, sodium caseinate, and chitosan. FTIR spectra confirmed the interaction of the functional groups of the polymers and BPO. The incorporation of the BPO increased the crystallinity of the films. Moreover, the thermal analysis including TGA, DSC and DTG demonstrated an increase in the thermal stability of the edible films with the addition of the BPO. These findings demonstrated that sodium caseinate and chitosan composite based edible films loaded with BPO can be used as sustainable active food packaging material.


Asunto(s)
Quitosano , Películas Comestibles , Aceites Volátiles , Piper nigrum , Quitosano/química , Antioxidantes/química , Caseínas , Embalaje de Alimentos/métodos
18.
Scientifica (Cairo) ; 2023: 6640103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928749

RESUMEN

The pharmaceutical sector has made considerable strides recently, emphasizing improving drug delivery methods to increase the bioavailability of various drugs. When used as a medication delivery method, nanoemulsions have multiple benefits. Their small droplet size, which is generally between 20 and 200 nanometers, creates a significant interfacial area for drug dissolution, improving the solubility and bioavailability of drugs that are weakly water-soluble. Additionally, nanoemulsions are a flexible platform for drug administration across various therapeutic areas since they can encapsulate hydrophilic and hydrophobic medicines. Nanoemulsion can be formulated in multiple dosage forms, for example, gels, creams, foams, aerosols, and sprays by using low-cost standard operative processes and also be taken orally, topically, topically, intravenously, intrapulmonary, intranasally, and intraocularly. The article explores nanoemulsion formulation and production methods, emphasizing the role of surfactants and cosurfactants in creating stable formulations. In order to customize nanoemulsions to particular medication delivery requirements, the choice of components and production techniques is crucial in assuring the stability and efficacy of the finished product. Nanoemulsions are a cutting-edge technology with a lot of potential for improving medication bioavailability in a variety of therapeutic contexts. They are a useful tool in the creation of innovative pharmaceutical formulations due to their capacity to enhance drug solubility, stability, and delivery. Nanoemulsions are positioned to play a crucial role in boosting medication delivery and enhancing patient outcomes as this field of study continues to advance.

19.
Gels ; 9(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37504390

RESUMEN

The essential oil extracted from Melissa officinalis (MOEO) exhibits a wide range of therapeutic properties, including antioxidant, antibacterial, and antifungal activities. The current research aimed to analyze the mechanical, barrier, chemical, and antioxidant properties of pectin and collagen-based films. Hydrogel-based films loaded with varying concentrations of MOEO (0.1%, 0.15%, and 0.2%) were prepared by solvent-casting method, and their physicochemical as well as antioxidant properties were examined. GC-MS analysis revealed the presence of major components in MOEO such as 2,6-octadienal, 3,7-dimethyl, citral, caryophyllene, geranyl acetate, caryophyllene oxide, citronellal, and linalool. Fourier transform infrared (FTIR) results revealed the interaction between components of the essential oil and polymer matrix. Scanning electron microscopy (SEM) revealed that films loaded with the highest concentration (0.2%) of MOEO showed more homogeneous structure with fewer particles, cracks, and pores as compared to control film sample. MOEO-incorporated films exhibited higher elongation at break (EAB) (30.24-36.29%) and thickness (0.068-0.073 mm); however, they displayed lower tensile strength (TS) (3.48-1.25 MPa) and transparency (87.30-82.80%). MOEO-loaded films demonstrated superior barrier properties against water vapors. According to the results, the incorporation of MOEO into pectin-collagen composite hydrogel-based films resulted in higher antioxidant properties, indicating that MOEO has the potential to be used in active food packaging material for potential applications.

20.
Gels ; 9(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102949

RESUMEN

Several studies have reported the advantages of incorporating essential oils in hydrogel-based films for improving their physiochemical and antioxidant attributes. Cinnamon essential oil (CEO) has great potential in industrial and medicinal applications as an antimicrobial and antioxidant agent. The present study aimed to develop sodium alginate (SA) and acacia gum (AG) hydrogel-based films loaded with CEO. Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and texture analysis (TA) were performed to analyze the structural, crystalline, chemical, thermal, and mechanical behaviour of the edible films that were loaded with CEO. Moreover, the transparency, thickness, barrier, thermal, and color parameters of the prepared hydrogel-based films loaded with CEO were also assessed. The study revealed that as the concentration of oil in the films was raised, the thickness and elongation at break (EAB) increased, while transparency, tensile strength (TS), water vapor permeability (WVP), and moisture content (MC) decreased. As the concentration of CEO increased, the hydrogel-based films demonstrated a significant improvement in their antioxidant properties. Incorporating CEO into the SA-AG composite edible films presents a promising strategy for producing hydrogel-based films with the potential to serve as food packaging materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...