Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0296127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626020

RESUMEN

Lyme disease is the most prevalent vector-borne infectious disease in Europe and the USA. Borrelia burgdorferi, as the causative agent of Lyme disease, is transmitted to the mammalian host during the tick blood meal. To adapt to the different encountered environments, Borrelia has adjusted the expression pattern of various, mostly outer surface proteins. The function of most B. burgdorferi outer surface proteins remains unknown. We determined the crystal structure of a previously uncharacterized B. burgdorferi outer surface protein BBK01, known to belong to the paralogous gene family 12 (PFam12) as one of its five members. PFam12 members are shown to be upregulated as the tick starts its blood meal. Structural analysis of BBK01 revealed similarity to the coiled coil domain of structural maintenance of chromosomes (SMC) protein family members, while functional studies indicated that all PFam12 members are non-specific DNA-binding proteins. The residues involved in DNA binding were identified and probed by site-directed mutagenesis. The combination of SMC-like proteins being attached to the outer membrane and exposed to the environment or located in the periplasm, as observed in the case of PFam12 members, and displaying the ability to bind DNA, represents a unique feature previously not observed in bacteria.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Garrapatas , Animales , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enfermedad de Lyme/microbiología , Garrapatas/genética , Proteínas de la Membrana/metabolismo , ADN/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Mamíferos/genética
2.
Sci Rep ; 13(1): 18610, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903872

RESUMEN

Fructosyl peptide oxidases (FPOX) are deglycating enzymes that find application as key enzymatic components in diabetes monitoring devices. Indeed, their use with blood samples can provide a measurement of the concentration of glycated hemoglobin and glycated albumin, two well-known diabetes markers. However, the FPOX currently employed in enzymatic assays cannot directly detect whole glycated proteins, making it necessary to perform a preliminary proteolytic treatment of the target protein to generate small glycated peptides that can act as viable substrates for the enzyme. This is a costly and time consuming step. In this work, we used an in silico protein engineering approach to enhance the overall thermal stability of the enzyme and to improve its catalytic activity toward large substrates. The final design shows a marked improvement in thermal stability relative to the wild type enzyme, a distinct widening of its access tunnel and significant enzymatic activity towards a range of glycated substrates.


Asunto(s)
Diabetes Mellitus , Péptidos , Humanos , Ingeniería de Proteínas , Péptido Hidrolasas , Albúmina Sérica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA