Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891245

RESUMEN

Diabetes mellitus (DM) is a global health concern characterized by a deficiency in insulin production. Considering the systemic toxicity and limited efficacy associated with current antidiabetic medications, there is the utmost need for natural, plant-based alternatives. Herbal medicines have experienced exponential growth in popularity globally in recent years for their natural origins and minimal side effects. Ecuador has a rich cultural history in ethnobotany that plays a crucial role in its people's lives. This study identifies 27 Ecuadorian medicinal plants that are traditionally used for diabetes treatment and are prepared through infusion, decoction, or juice, or are ingested in their raw forms. Among them, 22 plants have demonstrated hypoglycemic or anti-hyperglycemic properties that are rich with bioactive phytochemicals, which was confirmed in several in vitro and in vivo studies. However, Bryophyllum gastonis-bonnieri, Costus villosissimus, Juglans neotropica, Pithecellobium excelsum, and Myroxylon peruiferum, which were extensively used in traditional medicine preparation in Ecuador for many decades to treat diabetes, are lacking in pharmacological elucidation. The Ecuadorian medicinal plants used to treat diabetes have been found to have several bioactive compounds such as flavonoids, phenolics, fatty acids, aldehydes, and terpenoids that are mainly responsible for reducing blood sugar levels and oxidative stress, regulating intestinal function, improving insulin resistance, inhibiting α-amylase and α-glucosidase, lowering gluconeogenic enzymes, stimulating glucose uptake mechanisms, and playing an important role in glucose and lipid metabolism. However, there is a substantial lack of integrated approaches between the existing ethnomedicinal practices and pharmacological research. Therefore, this review aims to discuss and explore the traditional medicinal plants used in Ecuador for treating DM and their bioactive phytochemicals, which are mainly responsible for their antidiabetic properties. We believe that the use of Ecuadorian herbal medicine in a scientifically sound way can substantially benefit the local economy and industries seeking natural products.

2.
Sci Rep ; 14(1): 5608, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454146

RESUMEN

Essential oil from Thymus vulgaris L. has valuable therapeutic potential that is highly desired in pharmaceutical, food, and cosmetic industries. Considering these advantages and the rising market demand, induced polyploids were obtained using oryzalin to enhance essential oil yield. However, their therapeutic values were unexplored. So, this study aims to assess the phytochemical content, and antimicrobial, antioxidant, and anti-inflammatory activities of tetraploid and diploid thyme essential oils. Induced tetraploids had 41.11% higher essential oil yield with enhanced thymol and γ-terpinene content than diploid. Tetraploids exhibited higher antibacterial activity against all tested microorganisms. Similarly, in DPPH radical scavenging assay tetraploid essential oil was more potent with half-maximal inhibitory doses (IC50) of 180.03 µg/mL (40.05 µg TE/mg) than diploid with IC50 > 512 µg/mL (12.68 µg TE/mg). Tetraploids exhibited more effective inhibition of in vitro catalytic activity of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) than diploids at 50 µg/mL concentration. Furthermore, molecular docking revealed higher binding affinity of thymol and γ-terpinene towards tested protein receptors, which explained enhanced bioactivity of tetraploid essential oil. In conclusion, these results suggest that synthetic polyploidization using oryzalin could effectively enhance the quality and quantity of secondary metabolites and can develop more efficient essential oil-based commercial products using this induced genotype.


Asunto(s)
Monoterpenos Ciclohexánicos , Dinitrobencenos , Aceites Volátiles , Aceites de Plantas , Sulfanilamidas , Thymus (Planta) , Aceites Volátiles/farmacología , Aceites Volátiles/química , Timol/farmacología , Thymus (Planta)/química , Tetraploidía , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología
3.
Heliyon ; 9(12): e22480, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107328

RESUMEN

Essential oils (EOs) from Indian spices like Elettaria cardamomum (L.) Maton (small green cardamom), Syzygium aromaticum (L.) Merr. & L.M. Perry (clove), Cinnamomum zeylanicum Blume (cinnamon quills), and Cinnamomum tamala (Buch.-Ham.) T. Nees & C. H. Eberm (Indian bay leaves) exhibit a broad spectrum range of biological activity including antibacterial and antifungal activity. Yet, there is a lack of data regarding the antimicrobial activity of their formulations. Also, the link between the antimicrobial effect of individual EO with their chemical composition and molecular interaction with bacterial pathogens has not been systematically explored. Therefore, the objectives of the current study were to evaluate the antimicrobial activity and phytochemical characterization of EOs and to bridge the gap between them through in-silico molecular interactions. The antibacterial activity of EOs of four different spices and their formulations against foodborne pathogens such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was evaluated using the disc volatilization method. The chemical profile of the individual EO was determined through GC-MS analysis and molecular interactions of identified major components with bacterial proteins were carried out through molecular docking studies. All EOs and their formulations exhibited antibacterial activity ranging from 5.92 to 24.55 mm and 11-23.52 mm, respectively. Among all EOs, cinnamon and formulation C (cardamom: cinnamon- 2:1) exhibited the highest antibacterial activity. The composition of the EOs included sesquiterpenes, monoterpenoids, monoterpenes, and, phenylpropanoids such as (E)-cinnamaldehyde, δ-cadinene, α-copaene, eugenol, caryophyllene, eugenol acetate, methyl eugenol, menthadiene, eucalyptol, α-terpinyl acetate, and sabinene. Furthermore, docking study revealed that the abundant compounds from cinnamon EO mainly α-copaene and δ-cadinene had a high binding affinity towards the bacterial essential proteins which increases the bacterial susceptibility towards cinnamon EO. The selected EOs and their formulations were systematically analysed and they were effective against foodborne pathogens. The current findings suggest the application of these EOs against food pathogens with further research.

4.
Front Plant Sci ; 14: 1280118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885667

RESUMEN

Omics techniques, including genomics, transcriptomics, proteomics, and metabolomics have smoothed the researcher's ability to generate hypotheses and discover various agronomically relevant functions and mechanisms, as well as their implications and associations. With a significant increase in the number of cases with resistance to multiple herbicide modes of action, studies on herbicide resistance are currently one of the predominant areas of research within the field of weed science. High-throughput technologies have already started revolutionizing the current molecular weed biology studies. The evolution of herbicide resistance in weeds (particularly via non-target site resistance mechanism) is a perfect example of a complex, multi-pathway integration-induced response. To date, functional genomics, including transcriptomic and metabolomic studies have been used separately in herbicide resistance research, however there is a substantial lack of integrated approach. Hence, despite the ability of omics technologies to provide significant insights into the molecular functioning of weeds, using a single omics can sometimes be misleading. This mini-review will aim to discuss the current progress of transcriptome-based and metabolome-based approaches in herbicide resistance research, along with their systematic integration.

5.
Sensors (Basel) ; 22(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35898058

RESUMEN

As industries need more real-time monitoring and interconnected systems, the demand for wireless sensors expands. Vibrational energy harvesters are a potential solution for powering these sensors, as vibrations commonly exist where monitoring occurs. Developments in low-power circuitry have also led to the feasibility of these types of harvesters. Electromagnetic harvesters are a standout among various types of vibrational harvesters due to their ability to capture kinetic energy in a low-frequency range. This leads to these devices being more applicable in real-world applications where ambient vibrations are typical of having low frequencies. Hence, extensive research has been undertaken to make electromagnetic harvesters more efficient and compact. This review study aims to examine recent literature that has made advancements and demonstrated the full potential of such devices.

6.
Environ Monit Assess ; 194(4): 276, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35286502

RESUMEN

Kolkata being a metropolitan city in India has its main municipal solid waste dumpsite situated at Dhapa just adjacent to the East Kolkata Wetlands (Ramsar site). The current prevalent situation at Dhapa is open dumping leading to various contaminations and hazards putting forth the need to look for alternative sites where the landfiilling operation can be shifted to using scientific methods. A user interface (UI)-based analytical hierarchy process (AHP) tool has been developed within the Google Earth Engine (GEE) cloud platform to find out the alternative dumping sites using geospatial layers. AHP function is not available as a native algorithm or developed by any researcher in GEE. The tool has three major functionalities, of which the first one handles the UI elements. The AHP procedure is within another function, and the last function integrates the AHP coefficients to the layers generating the final suitability layer. Users can also upload comparison matrix as GEE asset in the form of CSV file which gets automatically integrated into the AHP to calculate the coefficients and consistency ratio to generate the spatial suitability layers. This approach showcases a generalized AHP function within the GEE environment, which has been done for the first time. The tool is designed in the cloud platform which is dynamic, robust and suitable for use in various AHP-based suitability analysis in environmental monitoring and assessment.


Asunto(s)
Eliminación de Residuos , Proceso de Jerarquía Analítica , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Eliminación de Residuos/métodos , Motor de Búsqueda , Instalaciones de Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA