Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nutrients ; 16(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337681

RESUMEN

Serum 25(OH)D deficiency consistently demonstrated molecular mechanisms through which chronic inflammation is associated with the risk of nasopharyngeal carcinoma (NPC). This study aimed to determine the association between serum 25(OH)D and NPC. A matched case-control study was conducted at two local hospitals. A total of 300 histologically confirmed NPC cases were matched with controls for age, gender, and ethnicity, and assessed for vitamin D status and other nutritional factors. Mean Vitamin D concentration was significantly lower among cases compared to controls (63.17 ± 19.15 nmol/L and 67.34 ± 23.06 nmol/L) (t = -2.41, p = 0.016). Multiple conditional logistic regression analysis indicated that higher levels of serum 25(OH)D were associated with reduced odds of NPC (AOR = 0.73, 95% CI = 0.57-0.94, p = 0.016) controlling for confounders including BMI, physical activity, smoking status, alcohol consumption, consumption of food high in vitamin D, salted fish consumption, and family history of NPC. There was a significant association between inadequate serum 25(OH)D status with accumulation of four risk factors and increased odds of getting NPC using polynomial regression analysis. Increased NPC odds ratios were observed after sequential accumulation of additional risk factors with the presence of inadequate serum 25(OH)D status (OR = 0.54, 95% CI = 0.27, 4.77, p = 0.322, OR = 1.04, 95% CI = 0.64, 1.72, p = 0.267, OR = 1.15, 95% CI = 0.73, 1.80, p = 0.067, OR = 1.93, 95% CI = 1.13, 3.31, p = 0.022, and OR = 5.55, 95% CI = 1.67, 10.3, p < 0.001 respectively). Future research in Malaysia should involve both prospective cohort studies and randomized controlled trials to confirm and further clarify the role of vitamin D in NPC outcomes.


Asunto(s)
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Deficiencia de Vitamina D , Humanos , Calcifediol , Estudios de Casos y Controles , Malasia/epidemiología , Carcinoma Nasofaríngeo/epidemiología , Neoplasias Nasofaríngeas/epidemiología , Estudios Prospectivos , Factores de Riesgo , Vitamina D/sangre , Deficiencia de Vitamina D/complicaciones , Masculino , Femenino
2.
ACS Appl Bio Mater ; 6(10): 3959-3983, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37699558

RESUMEN

Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanotecnología , Biopolímeros/uso terapéutico
3.
Front Plant Sci ; 14: 1240361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662162

RESUMEN

The quality of tropical fruits and vegetables and the expanding global interest in eating healthy foods have resulted in the continual development of reliable, quick, and cost-effective quality assurance methods. The present review discusses the advancement of non-destructive spectral measurements for evaluating the quality of major tropical fruits and vegetables. Fourier transform infrared (FTIR), Near-infrared (NIR), Raman spectroscopy, and hyperspectral imaging (HSI) were used to monitor the external and internal parameters of papaya, pineapple, avocado, mango, and banana. The ability of HSI to detect both spectral and spatial dimensions proved its efficiency in measuring external qualities such as grading 516 bananas, and defects in 10 mangoes and 10 avocados with 98.45%, 97.95%, and 99.9%, respectively. All of the techniques effectively assessed internal characteristics such as total soluble solids (TSS), soluble solid content (SSC), and moisture content (MC), with the exception of NIR, which was found to have limited penetration depth for fruits and vegetables with thick rinds or skins, including avocado, pineapple, and banana. The appropriate selection of NIR optical geometry and wavelength range can help to improve the prediction accuracy of these crops. The advancement of spectral measurements combined with machine learning and deep learning technologies have increased the efficiency of estimating the six maturity stages of papaya fruit, from the unripe to the overripe stages, with F1 scores of up to 0.90 by feature concatenation of data developed by HSI and visible light. The presented findings in the technological advancements of non-destructive spectral measurements offer promising quality assurance for tropical fruits and vegetables.

4.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513820

RESUMEN

The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.

5.
Sensors (Basel) ; 23(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299748

RESUMEN

Melamine and its derivative, cyanuric acid, are occasionally added to pet meals because of their nitrogen-rich qualities, leading to the development of several health-related issues. A nondestructive sensing technique that offers effective detection must be developed to address this problem. In conjunction with machine learning and deep learning technique, Fourier transform infrared (FT-IR) spectroscopy was employed in this investigation for the nondestructive quantitative measurement of eight different concentrations of melamine and cyanuric acid added to pet food. The effectiveness of the one-dimensional convolutional neural network (1D CNN) technique was compared with that of partial least squares regression (PLSR), principal component regression (PCR), and a net analyte signal (NAS)-based methodology, called hybrid linear analysis (HLA/GO). The 1D CNN model developed for the FT-IR spectra attained correlation coefficients of 0.995 and 0.994 and root mean square error of prediction values of 0.090% and 0.110% for the prediction datasets on the melamine- and cyanuric acid-contaminated pet food samples, respectively, which were superior to those of the PLSR and PCR models. Therefore, when FT-IR spectroscopy is employed in conjunction with a 1D CNN model, it serves as a potentially rapid and nondestructive method for identifying toxic chemicals added to pet food.


Asunto(s)
Aprendizaje Profundo , Espectroscopía Infrarroja por Transformada de Fourier , Contaminación de Alimentos/análisis
6.
Foods ; 12(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37297412

RESUMEN

Spent Gromwell root-based multifunctional carbon dots (g-CDs) and sulfur-functionalized g-CDs (g-SCDs) were synthesized using a hydrothermal method. The mean particle size of g-CDs was confirmed to be 9.1 nm by TEM (transmission electron microscopy) analysis. The zeta potentials of g-CDs and g-SCDs were mostly negative with a value of -12.5 mV, indicating their stability in colloidal dispersion. Antioxidant activities were 76.9 ± 1.6% and 58.9 ± 0.8% for g-CDs, and 99.0 ± 0.1% and 62.5 ± 0.5% for g-SCDs by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging tests, respectively. In addition, the bathochromic shift of g-CDs is observed when their emission peaks appear at a higher wavelength than the excitation peaks. The prepared g-CDs and g-SCDs solutions were used as a coating agent for potato slices. The browning index of the control potato slices increased significantly from 5.0 to 33.5% during 24 to 72 h storage. However, the sample potato slices coated with g-CDs or g-SCDs suppressed the increase in the browning index. In particular, the browning index of the potato slices coated with g-SCDs ranged from 1.4 to 5.5%, whereas the potato slices coated with g-CDs had a browning index ranging from 3.5 to 26.1%. The g-SCDs were more effective in delaying oxidation or browning in foods. The g-CDs and g-SCDs also played a catalytic role in the Rhodamine B dye degradation activity. This activity will be useful in the future to break down toxins and adulterants in food commodities.

7.
Pharmaceutics ; 15(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986879

RESUMEN

Recently, carbon dots (CDs) have been actively studied and reported for their various properties. In particular, the specific characteristics of carbon dots have been considered as a possible technique for cancer diagnosis and therapy. This is also a cutting-edge technology that offers fresh ideas for treating various disorders. Though carbon dots are still in their infancy and have not yet shown their value to society, their discovery has already resulted in some noteworthy advancements. The application of CDs indicates conversion in natural imaging. Photography using CDs has demonstrated extraordinary appropriateness in bio-imaging, the discovery of novel drugs, the delivery of targeted genes, bio-sensing, photodynamic therapy, and diagnosis. This review seeks to provide a comprehensive understanding of CDs, including their benefits, characteristics, applications, and mode of action. In this overview, many CD design strategies will be highlighted. In addition, we will discuss numerous studies on cytotoxic testing to demonstrate the safety of CDs. The current study will address the production method, mechanism, ongoing research, and application of CDs in cancer diagnosis and therapy.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35319390

RESUMEN

Even today, cancer is one of the prominent leading causes of death worldwide. However, there are a couple of treatment options available for management, but the adverse effects are more prominent as compared to therapeutic effects. Therefore, there is a need to design some midway that may help to bypass the negative effects or lower their severity. Nanotechnology has addressed many issues, still many miles are needed to cover before reaching the center stage. The developed nanoformulations can target distant organs owing to their multifunctionality and targeting potential. Stimuli-responsive nanomedicine is one of the most exploited formulations. They can encapsulate and release the drugs for a higher period. However, they release a burst mechanism. The other nanoformulations contain dendrimers, micelles, and lipid-based nano-formulations that have been developed and evaluated for their efficacy in cancer treatment. This review paper highlights some significant patents granted/applied in various patent offices around the globe to treat cancer using the nanotechnology. The Google Patent, United States Patent and Trademark Office (USPTO), Escapenet, and many others were used as the search engine for patent search, and data were collected and analyzed. They used these patented technologies for diagnostic and treatment options, enhancing the absorption, distribution, metabolism, and excretion (ADME) profile of therapeutic molecules.


Asunto(s)
Neoplasias , Patentes como Asunto , Humanos , Nanomedicina , Neoplasias/tratamiento farmacológico
10.
Recent Pat Nanotechnol ; 17(3): 190-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35142273

RESUMEN

BACKGROUND: Controlled drug release and site-specific delivery of drugs make nanocapsules the most approbative drug delivery system for various kinds of drugs, bioactive, protein, and peptide compounds. Nanocapsules (NCs) are spherical shape microscopic shells consisting of a core (solid or liquid) in which the drug is positioned in a cavity enclosed by a distinctive polymeric membrane. OBJECTIVES: The main objective of the present patent study is to elaborate on various formulation techniques and methods of nanocapsules (NCs). The review also spotlights various biomedical applications as well as on the patents of NCs to date. METHODS: The review was extracted from the searches performed using various search engines such as PubMed, Google Patents, Medline, Google Scholars, etc. In order to emphasize the importance of NCs, some published patents of NCs have also been reported in the review. RESULTS: NCs are tiny magical shells having incredible reproducibility. Various techniques can be used to formulate NCs. The pharmaceutical performance of the formulated NCs can be judged by evaluating their shape, size, entrapment efficiency, loading capacity, etc., using different analytical techniques. Their main applications are found in the field of agrochemicals, genetic manipulation, cosmetics, hygiene items, strategic distribution of drugs to tumors, nanocapsule bandages to combat infection, and radiotherapy. CONCLUSION: In the present review, our team made a deliberate effort to summarize the recent advances in the field of NCs and focus on new patents related to the implementation of NCs delivery systems in the area of some life-threatening disorders like diabetes, cancer, and cardiovascular diseases.


Asunto(s)
Nanocápsulas , Nanocápsulas/química , Reproducibilidad de los Resultados , Patentes como Asunto , Sistemas de Liberación de Medicamentos , Polímeros/química
11.
CNS Neurol Disord Drug Targets ; 22(7): 1070-1089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35702800

RESUMEN

BACKGROUND: Addiction is always harmful to the human body. Smartphone addiction also affects students' mental and physical health. AIM: This study aims to determine the research volume conducted on students who are affected by smartphone addiction and design a database. We intended to highlight critical problems for future research. In addition, this paper enterprises a comprehensive and opinion-based image of smartphone-addicted students. METHODOLOGY: We used two types of methods, such as systematic literature review and research questions based on the Scopus database to complete this study. We found 27 research articles and 11885 subjects (mean ±SD: 440.19 ± 513.58) using the PRISMA technique in this study. Additionally, we have deeply investigated evidence to retrieve the current understanding of smartphone addiction from physical changes, mental changes, behavioural changes, impact on performance, and significant concepts. Furthermore, the effect of this addiction has been linked to cancers, oxidative stress, and neurodegenerative disorders. RESULTS: This work has also revealed the future direction and research gap on smartphone addiction among students and has also tried to provide goals for upcoming research to be accomplished more significantly and scientifically. CONCLUSION: This study suggests future analysis towards identifying novel molecules and pathways for the treatment and decreasing the severity of mobile addiction.


Asunto(s)
Conducta Adictiva , Salud Mental , Humanos , Trastorno de Adicción a Internet , Estudiantes , Teléfono Inteligente , Estrés Oxidativo
12.
Front Pharmacol ; 13: 925387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910346

RESUMEN

Fungi are extremely diverse in terms of morphology, ecology, metabolism, and phylogeny. Approximately, 130 medicinal activities like antitumor, immunomodulation, antioxidant, radical scavenging, cardioprotective and antiviral actions are assumed to be produced by the various varieties of medicinal mushrooms. The polysaccharides, present in mushrooms like ß-glucans, micronutrients, antioxidants like glycoproteins, triterpenoids, flavonoids, and ergosterols can help establish natural resistance against infections and toxins.. Clinical trials have been performed on mushrooms like Agaricus blazei Murrill Kyowa for their anticancer effect, A. blazei Murrill for its antihypertensive and cardioprotective effects, and some other mushrooms had also been evaluated for their neurological effects. The human evaluation dose studies had been also performed and the toxicity dose was evaluated from the literature for number of mushrooms. All the mushrooms were found to be safe at a dose of 2000 mg/kg but some with mild side effects. The safety and therapeutic effectiveness of the fungal mushrooms had shifted the interest of biotechnologists toward fungal nanobiotechnology as the drug delivery system due to the vast advantages of nanotechnology systems. In complement to the vital nutritional significance of medicinal mushrooms, numerous species have been identified as sources of bioactive chemicals. Moreover, there are unanswered queries regarding its safety, efficacy, critical issues that affect the future mushroom medicine development, that could jeopardize its usage in the twenty-first century.

13.
Front Pharmacol ; 13: 892914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784702

RESUMEN

12 analogs bearing a structural similarity to Linomide, a bonafide anticancer agent were synthesized wherein cyclization of substituted dianilides rendered 4-hydroxyquinolin-2(1H)-ones that were subjected to a Mannich reaction to yield 4-hydroxy-3-(substituted-1-ylmethyl) quinolin-2(1H)-one analogs. Characterization was performed using IR, 1H nuclear magnetic resonance and 13C NMR spectral analysis. Subsequently, in vitro anticancer studies revealed that Compound 4b showed maximum cytotoxicity with IC50 values of 1.539 µM/ml and 1.732 µM/ml against A549 and K562 cell lines respectively. This, however, is lower in comparison with standard Paclitaxel (IC50 values of 0.3 µM/ml for both cell lines). Surprisingly, docking studies at the active site of EGFRK revealed Compound 4b possessed a MolDock Score of -110.2253 that is highly comparable to the standard 4-anilinoquinazoline (MolDock Score of -112.04). Our computational and biological data thus provides an insight on the cytotoxicity of these derivatives and warrants future research that can possibly lead to the development of potent anticancer therapeutics.

14.
Materials (Basel) ; 15(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35160749

RESUMEN

The strategies involved in the development of therapeutics for neurodegenerative disorders are very complex and challenging due to the existence of the blood-brain barrier (BBB), a closely spaced network of blood vessels and endothelial cells that functions to prevent the entry of unwanted substances in the brain. The emergence and advancement of nanotechnology shows favourable prospects to overcome this phenomenon. Engineered nanoparticles conjugated with drug moieties and imaging agents that have dimensions between 1 and 100 nm could potentially be used to ensure enhanced efficacy, cellular uptake, specific transport, and delivery of specific molecules to the brain, owing to their modified physico-chemical features. The conjugates of nanoparticles and medicinal plants, or their components known as nano phytomedicine, have been gaining significance lately in the development of novel neuro-therapeutics owing to their natural abundance, promising targeted delivery to the brain, and lesser potential to show adverse effects. In the present review, the promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed. Nanotechnology-based efforts performed in bioinformatics for early diagnosis as well as futuristic precision medicine in ND have also been discussed in the context of computational approach.

16.
Curr Diabetes Rev ; 18(9): e131221198789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34961463

RESUMEN

BACKGROUND: Obesity and diabetes are global epidemics resulting in a range of comorbidities. Both have been linked to an increased risk of hormonal imbalance, cancer, and other significant disorders, which are a concerning trend for cancer rates in the backdrop of rising obesity and diabetes rates worldwide. Around 1 in 10 persons in the United States and Canada have serious illnesses correlated to type 2 diabetes and early death. It is believed that the US economy alone spends $245 billion annually due to this health burden. Lifestyle modification with intermittent fasting protocol and proper diet helps lower blood glucose level, maintain the body mass index, and reduce inflammation, which is the main cause of all chronic diseases. METHODS: We searched case series and clinical trials on type 2 diabetes, insulin resistance, cancer, thyroid, cardiovascular disease, or other inflammatory diseases in response to intermittent fasting in the PubMed, MEDLINE, and Google Scholar databases. OBJECTIVE: In this review, we have focused on intermittent fasting-based approaches that are becoming more widely accepted for improving health and reducing unwanted effects in patients with type 2 diabetes, cancer, cardiovascular disease, neurodegenerative disease, obesity, thyroid, and hormonal imbalance; it is also contemplated whether intermittent fasting can be considered as a non-medicinal therapeutic option for persons suffering from chronic diseases. CONCLUSION: Intermittent fasting successfully reversed diabetes, thyroid, and high blood pressure, elevated lipid levels, and maintained the body mass index; also, studies have shown that it has been instructed to be followed for the treatment and prevention of cancer and neurodegenerative diseases.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Neoplasias , Enfermedades Neurodegenerativas , Glucemia , Enfermedad Crónica , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/prevención & control , Ayuno , Humanos , Neoplasias/epidemiología , Neoplasias/prevención & control , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/terapia
17.
Mol Neurobiol ; 59(1): 657-680, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34751889

RESUMEN

Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-ß (Aß) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aß is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/uso terapéutico , Encéfalo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Antioxidantes/farmacología , Encéfalo/metabolismo , Humanos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/farmacología
18.
Curr Drug Deliv ; 19(6): 658-675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34077344

RESUMEN

The conventional drug delivery systems have a long list of repeated dosing and toxicity issues. The hydrogels solve these issues as they minimize such activities and optimize therapeutic benefits. The hydrogels possess tunable properties that can withstand degradation, metabolism, and control release moieties. Some areas of applications of hydrogels involve wound healing, ocular systems, vaginal gels, scaffolds for tissue and bone engineering, etc. They comprise about 90% of the water that makes them suitable bio-mimic moiety. Here, we present an extensive review of various perspectives of hydrogels, along with their applications.


Asunto(s)
Hidrogeles , Cicatrización de Heridas , Sistemas de Liberación de Medicamentos
20.
Foods ; 10(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34828914

RESUMEN

Nanoparticles are gaining momentum as a smart tool towards a safer, more cost-effective and sustainable food chain. This study aimed to provide an overview of the potential uses, preparation, properties, and applications of nanoparticles to process and preserve fresh meat and processed meat products. Nanoparticles can be used to reinforce the packaging material resulting in the improvement of sensory, functional, and nutritional aspects of meat and processed meat products. Further, these particles can be used in smart packaging as biosensors to extend the shelf-life of fresh and processed meat products and also to monitor the final quality of these products during the storage period. Nanoparticles are included in product formulation as carriers of health-beneficial and/or functional ingredients. They showed great efficiency in encapsulating bioactive ingredients and preserving their properties to ensure their functionality (e.g., antioxidant and antimicrobial) in meat products. As a result, nanoparticles can efficiently contribute to ensuring product safety and quality whilst reducing wastage and costs. Nevertheless, a wider implementation of nanotechnology in meat industry is highly related to its economic value, consumers' acceptance, and the regulatory framework. Being a novel technology, concerns over the toxicity of nanoparticles are still controversial and therefore efficient analytical tools are deemed crucial for the identification and quantification of nanocomponents in meat products. Thus, migration studies about nanoparticles from the packaging into meat and meat products are still a concern as it has implications for human health associated with their toxicity. Moreover, focused economic evaluations for implementing nanoparticles in meat packaging are crucial since the current literature is still scarce and targeted studies are needed before further industrial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA