Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37934806

RESUMEN

During infection, bacteriophages produce diverse gene products to overcome bacterial antiphage defenses, to outcompete other phages, and to take over cellular processes. Even in the best-studied model phages, the roles of most phage-encoded gene products are unknown, and the phage population represents a largely untapped reservoir of novel gene functions. Considering the sheer size of this population, experimental screening methods are needed to sort through the enormous collection of available sequences and identify gene products that can modulate bacterial behavior for downstream functional characterization. Here, we describe the construction of a plasmid-based overexpression library of 94 genes encoded by Hammy, a Cluster K mycobacteriophage closely related to those infecting clinically important mycobacteria. The arrayed library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 24 gene products (representing ∼25% of the Hammy genome) capable of inhibiting growth of the host bacterium Mycobacterium smegmatis. Half of these are related to growth inhibitors previously identified in related phage Waterfoul, supporting their functional conservation; the other genes represent novel additions to the list of known antimycobacterial growth inhibitors. This work, conducted as part of the HHMI-supported Science Education Alliance Gene-function Exploration by a Network of Emerging Scientists (SEA-GENES) project, highlights the value of parallel, comprehensive overexpression screens in exploring genome-wide patterns of phage gene function and novel interactions between phages and their hosts.


Asunto(s)
Bacteriófagos , Micobacteriófagos , Mycobacterium , Mycobacterium smegmatis/genética , Micobacteriófagos/genética , Mycobacterium/genética , Bacteriófagos/genética , Plásmidos
2.
Cancer Res Commun ; 3(10): 2044-2061, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37812088

RESUMEN

PARP inhibitors (PARPi) have emerged as a promising targeted therapeutic intervention for metastatic castrate-resistant prostate cancer (mCRPC). However, the clinical utility of PARPi is limited to a subset of patients who harbor aberrations in the genes associated with the homologous recombination (HR) pathway. Here, we report that targeting metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an oncogenic long noncoding RNA (lncRNA), contrives a BRCAness-like phenotype, and augments sensitivity to PARPi. Mechanistically, we show that MALAT1 silencing reprograms the homologous recombination (HR) transcriptome and makes prostate cancer cells more vulnerable to PARPi. Particularly, coinhibition of MALAT1 and PARP1 exhibits a decline in clonogenic survival, delays resolution of γH2AX foci, and reduces tumor burden in mice xenograft model. Moreover, we show that miR-421, a tumor suppressor miRNA, negatively regulates the expression of HR genes, while in aggressive prostate cancer cases, miR-421 is sequestered by MALAT1, leading to increased expression of HR genes. Conclusively, our findings suggest that MALAT1 ablation confers sensitivity to PARPi, thus highlighting an alternative therapeutic strategy for patients with castration-resistant prostate cancer (CRPC), irrespective of the alterations in HR genes. SIGNIFICANCE: PARPi are clinically approved for patients with metastatic CRPC carrying mutations in HR genes, but are ineffective for HR-proficient prostate cancer. Herein, we show that oncogenic lncRNA, MALAT1 is frequently overexpressed in advanced stage prostate cancer and plays a crucial role in maintaining genomic integrity. Importantly, we propose a novel therapeutic strategy that emphasizes MALAT1 inhibition, leading to HR dysfunction in both HR-deficient and -proficient prostate cancer, consequently augmenting their susceptibility to PARPi.


Asunto(s)
MicroARNs , Neoplasias de la Próstata Resistentes a la Castración , ARN Largo no Codificante , Masculino , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Recombinación Homóloga/genética
4.
Adv Appl Microbiol ; 115: 65-113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34140134

RESUMEN

Climate change, with its extreme temperature, weather and precipitation patterns, is a major global concern of dryland farmers, who currently meet the challenges of climate change agronomically and with growth of drought-tolerant crops. Plants themselves compensate for water stress by modifying aerial surfaces to control transpiration and altering root hydraulic conductance to increase water uptake. These responses are complemented by metabolic changes involving phytohormone network-mediated activation of stress response pathways, resulting in decreased photosynthetic activity and the accumulation of metabolites to maintain osmotic and redox homeostasis. Phylogenetically diverse microbial communities sustained by plants contribute to host drought tolerance by modulating phytohormone levels in the rhizosphere and producing water-sequestering biofilms. Drylands of the Inland Pacific Northwest, USA, illustrate the interdependence of dryland crops and their associated microbiota. Indigenous Pseudomonas spp. selected there by long-term wheat monoculture suppress root diseases via the production of antibiotics, with soil moisture a critical determinant of the bacterial distribution, dynamics and activity. Those pseudomonads producing phenazine antibiotics on wheat had more abundant rhizosphere biofilms and provided improved tolerance to drought, suggesting a role of the antibiotic in alleviation of drought stress. The transcriptome and metabolome studies suggest the importance of wheat root exudate-derived osmoprotectants for the adaptation of these pseudomonads to the rhizosphere lifestyle and support the idea that the exchange of metabolites between plant roots and microorganisms profoundly affects and shapes the belowground plant microbiome under water stress.


Asunto(s)
Microbiota , Rizosfera , Deshidratación , Raíces de Plantas , Microbiología del Suelo , Triticum
5.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32816975

RESUMEN

This study presents high-quality draft genome assemblies of six bacterial strains isolated from the roots of wheat grown in soil contaminated with cadmium. The results of this study will help to elucidate at the molecular level how heavy metals affect interactions between beneficial rhizobacteria and crop plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA