Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 326: 121455, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36934964

RESUMEN

Agricultural and non-agricultural sources emission contribute to atmospheric ammonia (NH3) and particulate ammonium (NH4+). However, our understanding on the sources of NH3 and NH4+ in PM2.5 (particles smaller than 2.5 µm) during the winter period in the urban atmosphere is limited. Here, we measured the concentrations and stable nitrogen isotopic composition (δ15N) of NH3 and NH4+ in parallel during December 2018 in urban Beijing to assess the non-agricultural and agricultural sources contributions to NH3 and NH4+ in ambient air based on the Chemical Transport Model (CTM), a Bayesian isotope mixing model (SIMMR), and the δ15N signatures that we developed. Our study found weekly NH4+ and NH3 concentrations were on average 2.5 ± 1.4 µg m-3 and 3.8 ± 1.7 µg m-3, respectively during December 2018. Weekly concentration weighted δ15N(NH4+) values ranged from 4.5‰ to 13.7‰ with an average value of 8.2 ± 3.9‰ during December 2018. After accounting for nitrogen isotopic fractionation from NH3 gas to NH4+ conversion, initial δ15N(NH3) values ranged from -22.5‰ to -12.8‰ with an average value of -17.4 ± 3.5‰. Further, weekly measured δ15N(NH3) values ranged from -22.2‰ to -10.2‰ (after correction) with an average value of -15.6 ± 5.3‰ during December 2018. Results from two different isotope-based method showed non-agricultural sources contributed 31.2%-63.1%, with an average value of 47.5 ± 14.6%, to NH4+ and 32.3%-71.2%, with an average of 53.4 ± 16.1%, to ambient NH3 during December 2018 in Beijing. Results from CMAQ-ISAM suggest non-agricultural sources contributed on average 66.2 ± 1.9% to ambient NH4+ and 66.4 ± 1.9% to ambient NH3 during December 2018. Results from this study suggest that agricultural and non-agricultural sources nearly equally contributed to NH3 and NH4+ in urban Beijing during December 2018 with an uncertainty range of 13%-19% between isotope-based methods and CTM method.


Asunto(s)
Contaminantes Atmosféricos , Isótopos de Nitrógeno/análisis , Beijing , Contaminantes Atmosféricos/análisis , Teorema de Bayes , Monitoreo del Ambiente , Nitrógeno/análisis , China
2.
Front Environ Sci Eng ; 15(6): 126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777477

RESUMEN

Agricultural sources and non-agricultural emissions contribute to gaseous ammonia (NH3) that plays a vital role in severe haze formation. Qualitative and quantitative contributions of these sources to ambient PM2.5 (particulate matter with an aerodynamic equivalent diameter below 2.5 µm) concentrations remains uncertain. Stable nitrogen isotopic composition (δ15N) of NH3 and NH4 + (δ15N(NH3) and δ15N(NH4 +), respectively) can yield valuable information about its sources and associated processes. This review provides an overview of the recent progress in analytical techniques for δ15N(NH3) and δ15N(NH4 +) measurement, sampling of atmospheric NH3 and NH4 + in the ambient air and their sources signature (e.g., agricultural vs. fossil fuel), and isotope-based source apportionment of NH3 in urban atmosphere. This study highlights that collecting sample that are fully representative of emission sources remains a challenge in fingerprinting δ15N(NH3) values of NH3 emission sources. Furthermore, isotopic fractionation during NH3 gas-to-particle conversion under varying ambient field conditions (e.g., relative humidity, particle pH, temperature) remains unclear, which indicates more field and laboratory studies to validate theoretically predicted isotopic fractionation are required. Thus, this study concludes that lack of refined δ15N(NH3) fingerprints and full understanding of isotopic fractionation during aerosol formation in a laboratory and field conditions is a limitation for isotope-based source apportionment of NH3. More experimental work (in chamber studies) and theoretical estimations in combinations of field verification are necessary in characterizing isotopic fractionation under various environmental and atmospheric neutralization conditions, which would help to better interpret isotopic data and our understanding on NH x (NH3 + NH4 +) dynamics in the atmosphere. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at 10.1007/s11783-021-1414-6 and is accessible for authorized users. Supplementary material includes supplementary tables on summary of recent isotope-based source apportionment studies on ambient NH3 derived from δ15N(NH3) values (Table A1); and summary of recent isotope-based source apportionment studies on particulate NH4 + derived from δ15N(NH4 +) values (Table A2).

3.
Sci Total Environ ; 747: 141361, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32799025

RESUMEN

Atmospheric gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere while aerosol ammonium (NH4+) constitutes a majority of the inorganic cation concentration in total PM2.5 mass and plays a vital role in severe haze formation. This study tried to shed some light on sources of gaseous NH3 through integrating the parallel measurements of δ15N values in NH4+ and ambient NH3, NH3 source signature measurement, IsoSource model, and chemistry and transport model (CTM). As a result, predicted initial δ15N (NH3) values ranging from -42.0‰ to -4.9‰ were derived from daily δ15N(NH4+) values of fine particulate NH4+, and δ15N(NH3) values ranging from -26.8‰ to -17.2‰ were obtained from weekday/weekend δ15N(NH3) values, respectively. During summer, non-agricultural sources (e.g. fossil fuel sources, urban waste) contributed 63% to ambient NH3 in urban Beijing, derived from δ15N(NH3) values whereas 64% to ambient NH3, derived from δ15N(NH4+) values. These results suggested that non-agricultural sources were main contributors to gaseous NH3 even during summer and agricultural sources were not likely the main source of gaseous NH3 in urban Beijing. To further reduce the uncertainty of isotope-based source apportionment results, more laboratory and field studies are necessary to refine the δ15N(NH3) source profile of NH3 using validated collection technique as overlapping exist between δ15N(NH3) values in agricultural sources such as livestock breeding waste (-42.5‰ to -29.1‰) and fertilizer application (-51.5‰ to -35.0‰).


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Beijing , Monitoreo del Ambiente , Gases , Isótopos de Nitrógeno/análisis
4.
J Environ Sci (China) ; 95: 99-110, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653198

RESUMEN

PM2.5 filter sampling and components measurement were conducted in autumn and winter from 2014 to 2015 at a suburban site (referred herein as "LLH site") located in the southwest of Beijing. The offline aerosol mass spectrometry (offline-AMS) analysis and positive matrix factorization (PMF) were applied for measurement and source apportionment of water-soluble organic aerosol (WSOA). Organic aerosol (OA) always dominated PM2.5 during the sampling period, especially in winter. WSOA pollution was serious during the polluted period both in autumn (31.1 µg/m3) and winter (31.9 µg/m3), while WSOA accounted for 54.4% of OA during the polluted period in autumn, much more than that (21.3%) in winter. The oxidation degree of WSOA at LLH site was at a high level (oxygen-to-carbon ratio, O/C=0.91) and secondary organic aerosol (SOA) contributed more mass ratio of WSOA than primary organic aerosol (POA) during the whole observation period. In winter, coal combustion OA (CCOA) was a stable source of OA and on average accounted for 25.1% of WSOA. In autumn, biomass burning OA (BBOA) from household combustion contributed 38.3% of WSOA during polluted period. In addition to oxygenated OA (OOA), aqueous-oxygenated OA (aq-OOA) was identified as an important factor of SOA. During heavy pollution period, the mass proportion of aq-OOA to WSOA increased significantly, implying the significant SOA formation through aqueous-phase process. The result of this study highlights the concentration on controlling the residential coal and biomass burning, as well as the research needs on aqueous chemistry in OA formation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aerosoles/análisis , Beijing , Monitoreo del Ambiente , Material Particulado/análisis , Agua/análisis
5.
Sci Total Environ ; 689: 1293-1303, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31466166

RESUMEN

Water-soluble inorganic ions (WSI), a major component of PM2.5, often increased rapidly during the haze event in Beijing. Sulfate (SO42-), Nitrate (NO3-), and Ammonium (NH4+) are three main components of WSI. Since year 2015, sulfate concentrations in PM2.5 has gradually decreased owing to the effective control of SO2 emissions. However, the contribution of nitrate to PM2.5 has significantly increased during haze events in Beijing at the same time. In this study, a highly time-resolved online analyzer (Monitor for Aerosols and Gases, MARGA) was employed to measure the WSI in PM2.5 in Beijing from 5 February to 15 November 2017. Three typical haze events during this sampling period were investigated. During heavy pollution episodes in winter, nitrate concentrations increased from 7.5 µg/m3 to 45.6 µg/m3 (45.0% of WSI), while sulfate increased from 4.2 µg/m3 to 20.1 µg/m3 (19.8% of WSI). This indicated that nitrate is more important than sulfate as a driver for the growth of PM2.5 during the period of heavy air pollution in winter. Nitrate also dominates the increase of WSI in the pollution episodes in autumn, with an average concentration of 52.5 µg/m3, and contributed up to 67% of WSI. The average concentration ratio of NH4+ to SO42- was higher in autumn (1.02) than that in summer (0.74) and close to that in winter (1.00). This is mainly because the emission control of coal combustion in Beijing and surrounding areas results in an NH3-rich and SO2-lean atmosphere, which promoted the formation of ammonium nitrate. Our study indicates that nitrate has become the most important component of WSI in PM2.5 and is driving the rapid growth of PM2.5 concentrations during heavy pollution episodes in Beijing. Therefore, more efforts shall be made to reduce the nitrogen oxide and ammonia emissions in Beijing and surrounding areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA