Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398341

RESUMEN

miR-31 is a highly conserved microRNA that plays critical roles in cell proliferation, migration, and differentiation. We discovered miR-31 and some of its validated targets are enriched on the mitotic spindle of the dividing sea urchin embryo and mammalian cells. Using the sea urchin embryo, we found that miR-31 inhibition led to developmental delay correlated with increased cytoskeleton and chromosomal defects. We identified miR-31 to directly suppress several actin remodeling transcripts, ß-actin, Gelsolin, Rab35 and Fascin, which were localized to the mitotic spindle. miR-31 inhibition leads to increased newly translated Fascin at the spindles. Forced ectopic localization of Fascin transcripts to the cell membrane and translation led to significant developmental and chromosomal segregation defects, leading to our hypothesis that miR-31 regulates local translation at the mitotic spindle to ensure proper cell division. Furthermore, miR-31-mediated post-transcriptional regulation at the mitotic spindle may be an evolutionarily conserved regulatory paradigm of mitosis.

2.
Dev Dyn ; 250(12): 1778-1795, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34091985

RESUMEN

BACKGROUND: The growth of most bony tuberosities, like the deltoid tuberosity (DT), rely on the transmission of muscle forces at the tendon-bone attachment during skeletal growth. Tuberosities distribute muscle forces and provide mechanical leverage at attachment sites for joint stability and mobility. The genetic factors that regulate tuberosity growth remain largely unknown. In mouse embryos with global deletion of fibroblast growth factor 9 (Fgf9), the DT size is notably enlarged. In this study, we explored the tissue-specific regulation of DT size using both global and targeted deletion of Fgf9. RESULTS: We showed that cell hypertrophy and mineralization dynamics of the DT, as well as transcriptional signatures from skeletal muscle but not bone, were influenced by the global loss of Fgf9. Loss of Fgf9 during embryonic growth led to increased chondrocyte hypertrophy and reduced cell proliferation at the DT attachment site. This endured hypertrophy and limited proliferation may explain the abnormal mineralization patterns and locally dysregulated expression of markers of endochondral development in Fgf9null attachments. We then showed that targeted deletion of Fgf9 in skeletal muscle leads to postnatal enlargement of the DT. CONCLUSION: Taken together, we discovered that Fgf9 may play an influential role in muscle-bone cross-talk during embryonic and postnatal development.


Asunto(s)
Enfermedades Óseas/genética , Factor 9 de Crecimiento de Fibroblastos/genética , Músculo Esquelético/metabolismo , Tendones/patología , Animales , Animales Recién Nacidos , Desarrollo Óseo/genética , Enfermedades Óseas/patología , Condrogénesis/genética , Embrión de Mamíferos , Femenino , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Eliminación de Gen , Hipertrofia/genética , Hipertrofia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos/genética , Osteogénesis/genética , Embarazo , Tendones/embriología , Tendones/crecimiento & desarrollo , Tendones/metabolismo
3.
mBio ; 10(2)2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837341

RESUMEN

Viral infection exerts selection pressure on marine microbes, as virus-induced cell lysis causes 20 to 50% of cell mortality, resulting in fluxes of biomass into oceanic dissolved organic matter. Archaeal and bacterial populations can defend against viral infection using the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system, which relies on specific matching between a spacer sequence and a viral gene. If a CRISPR spacer match to any gene within a viral genome is equally effective in preventing lysis, no viral genes should be preferentially matched by CRISPR spacers. However, if there are differences in effectiveness, certain viral genes may demonstrate a greater frequency of CRISPR spacer matches. Indeed, homology search analyses of bacterioplankton CRISPR spacer sequences against virioplankton sequences revealed preferential matching of replication proteins, nucleic acid binding proteins, and viral structural proteins. Positive selection pressure for effective viral defense is one parsimonious explanation for these observations. CRISPR spacers from virioplankton metagenomes preferentially matched methyltransferase and phage integrase genes within virioplankton sequences. These virioplankton CRISPR spacers may assist infected host cells in defending against competing phage. Analyses also revealed that half of the spacer-matched viral genes were unknown, some genes matched several spacers, and some spacers matched multiple genes, a many-to-many relationship. Thus, CRISPR spacer matching may be an evolutionary algorithm, agnostically identifying those genes under stringent selection pressure for sustaining viral infection and lysis. Investigating this subset of viral genes could reveal those genetic mechanisms essential to virus-host interactions and provide new technologies for optimizing CRISPR defense in beneficial microbes.IMPORTANCE The CRISPR-Cas system is one means by which bacterial and archaeal populations defend against viral infection which causes 20 to 50% of cell mortality in the ocean. We tested the hypothesis that certain viral genes are preferentially targeted for the initial attack of the CRISPR-Cas system on a viral genome. Using CASC, a pipeline for CRISPR spacer discovery, and metagenome data from oceanic microbes and viruses, we found a clear subset of viral genes with high match frequencies to CRISPR spacers. Moreover, we observed a many-to-many relationship of spacers and viral genes. These high-match viral genes were involved in nucleotide metabolism, DNA methylation, and viral structure. It is possible that CRISPR spacer matching is an evolutionary algorithm pointing to those viral genes most important to sustaining infection and lysis. Studying these genes may advance the understanding of virus-host interactions in nature and provide new technologies for leveraging CRISPR-Cas systems in beneficial microbes.


Asunto(s)
Bacterias/genética , Bacterias/virología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , Genes Virales , Metagenoma , Microbiología del Agua , ADN Bacteriano/química , Homología de Secuencia
4.
J Bacteriol ; 201(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30692175

RESUMEN

Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information have been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light. Based on the action spectrum of the growth effect and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.IMPORTANCE Sunlight provides information about both place and time. In sunlit aquatic environments, primary producers release organic carbon and nitrogen along with other growth factors during the day. The ability of Actinobacteria to coordinate organic carbon uptake and utilization with production of photosynthate enables them to grow more efficiently in the daytime, and it potentially gives them a competitive advantage over heterotrophs that constitutively produce carbohydrate transporters, which is energetically costly, or produce transporters only after detection of the substrate(s), which delays their response. Understanding how light cues the transport of organic carbon and its conversion to biomass is key to understanding biochemical mechanisms within the carbon cycle, the fluxes through it, and the variety of mechanisms by which light enhances growth.


Asunto(s)
Actinobacteria/crecimiento & desarrollo , Actinobacteria/efectos de la radiación , Metabolismo de los Hidratos de Carbono/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Luz , Actinobacteria/metabolismo , Proteínas Bacterianas/metabolismo , Criptocromos/metabolismo
5.
PLoS One ; 9(12): e114804, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506826

RESUMEN

MOTIVATION: 16S rDNA hypervariable tag sequencing has become the de facto method for accessing microbial diversity. Illumina paired-end sequencing, which produces two separate reads for each DNA fragment, has become the platform of choice for this application. However, when the two reads do not overlap, existing computational pipelines analyze data from read separately and underutilize the information contained in the paired-end reads. RESULTS: We created a workflow known as Illinois Mayo Taxon Organization from RNA Dataset Operations (IM-TORNADO) for processing non-overlapping reads while retaining maximal information content. Using synthetic mock datasets, we show that the use of both reads produced answers with greater correlation to those from full length 16S rDNA when looking at taxonomy, phylogeny, and beta-diversity. AVAILABILITY AND IMPLEMENTATION: IM-TORNADO is freely available at http://sourceforge.net/projects/imtornado and produces BIOM format output for cross compatibility with other pipelines such as QIIME, mothur, and phyloseq.


Asunto(s)
Microbiota , ARN Ribosómico 16S/genética , Biblioteca de Genes , Genes de ARNr , Humanos , Filogenia , Análisis de Secuencia de ADN/métodos , Programas Informáticos
6.
BMC Bioinformatics ; 15: 224, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24972667

RESUMEN

BACKGROUND: Although the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome. RESULTS: For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients. CONCLUSIONS: Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/.


Asunto(s)
Perfilación de la Expresión Génica , Genómica/métodos , Instituciones de Salud , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Secuencia de Bases , Exones/genética , Humanos
7.
PLoS Genet ; 10(2): e1004135, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24550739

RESUMEN

Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.


Asunto(s)
Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Receptores ErbB/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib , Genoma Humano , Humanos , Imidazoles/administración & dosificación , Indazoles , Terapia Molecular Dirigida , Mutación , Pronóstico , Inhibidores de Proteínas Quinasas , Piridazinas/administración & dosificación , Pirimidinas/administración & dosificación , Quinazolinas/administración & dosificación , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Sulfonamidas/administración & dosificación , Transcriptoma
8.
PLoS One ; 8(12): e83356, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358278

RESUMEN

BACKGROUND: Structural variation (SV) represents a significant, yet poorly understood contribution to an individual's genetic makeup. Advanced next-generation sequencing technologies are widely used to discover such variations, but there is no single detection tool that is considered a community standard. In an attempt to fulfil this need, we developed an algorithm, SoftSearch, for discovering structural variant breakpoints in Illumina paired-end next-generation sequencing data. SoftSearch combines multiple strategies for detecting SV including split-read, discordant read-pair, and unmated pairs. Co-localized split-reads and discordant read pairs are used to refine the breakpoints. RESULTS: We developed and validated SoftSearch using real and synthetic datasets. SoftSearch's key features are 1) not requiring secondary (or exhaustive primary) alignment, 2) portability into established sequencing workflows, and 3) is applicable to any DNA-sequencing experiment (e.g. whole genome, exome, custom capture, etc.). SoftSearch identifies breakpoints from a small number of soft-clipped bases from split reads and a few discordant read-pairs which on their own would not be sufficient to make an SV call. CONCLUSIONS: We show that SoftSearch can identify more true SVs by combining multiple sequence features. SoftSearch was able to call clinically relevant SVs in the BRCA2 gene not reported by other tools while offering significantly improved overall performance.


Asunto(s)
Rotura Cromosómica , Variación Estructural del Genoma , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Biología Computacional/métodos , Humanos
9.
Nat Commun ; 4: 2091, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23820484

RESUMEN

DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.


Asunto(s)
Metilación de ADN/genética , Diatomeas/genética , Genoma/genética , Cromosomas/genética , Elementos Transponibles de ADN/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Sitios Genéticos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
10.
Appl Environ Microbiol ; 79(18): 5450-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23793630

RESUMEN

Viruses are the most abundant and diverse biological entities within soils, yet their ecological impact is largely unknown. Defining how soil viral communities change with perturbation or across environments will contribute to understanding the larger ecological significance of soil viruses. A new approach to examining the composition of soil viral communities based on random PCR amplification of polymorphic DNA (RAPD-PCR) was developed. A key methodological improvement was the use of viral metagenomic sequence data for the design of RAPD-PCR primers. This metagenomically informed approach to primer design enabled the optimization of RAPD-PCR sensitivity for examining changes in soil viral communities. Initial application of RAPD-PCR viral fingerprinting to soil viral communities demonstrated that the composition of autochthonous soil viral assemblages noticeably changed over a distance of meters along a transect of Antarctic soils and across soils subjected to different land uses. For Antarctic soils, viral assemblages segregated upslope from the edge of dry valley lakes. In the case of temperate soils at the Kellogg Biological Station, viral communities clustered according to land use treatment. In both environments, soil viral communities changed along with environmental factors known to shape the composition of bacterial host communities. Overall, this work demonstrates that RAPD-PCR fingerprinting is an inexpensive, high-throughput means for addressing first-order questions of viral community dynamics within environmental samples and thus fills a methodological gap between narrow single-gene approaches and comprehensive shotgun metagenomic sequencing for the analysis of viral community diversity.


Asunto(s)
Biodiversidad , Dermatoglifia del ADN/métodos , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Microbiología del Suelo , Virología/métodos , Virus/clasificación , Virus/aislamiento & purificación , Costos y Análisis de Costo , Dermatoglifia del ADN/economía , Ensayos Analíticos de Alto Rendimiento/economía , Ensayos Analíticos de Alto Rendimiento/métodos , Técnica del ADN Polimorfo Amplificado Aleatorio/economía , Virología/economía , Virus/genética
11.
Stand Genomic Sci ; 6(3): 427-39, 2012 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23407591

RESUMEN

One consistent finding among studies using shotgun metagenomics to analyze whole viral communities is that most viral sequences show no significant homology to known sequences. Thus, bioinformatic analyses based on sequence collections such as GenBank nr, which are largely comprised of sequences from known organisms, tend to ignore a majority of sequences within most shotgun viral metagenome libraries. Here we describe a bioinformatic pipeline, the Viral Informatics Resource for Metagenome Exploration (VIROME), that emphasizes the classification of viral metagenome sequences (predicted open-reading frames) based on homology search results against both known and environmental sequences. Functional and taxonomic information is derived from five annotated sequence databases which are linked to the UniRef 100 database. Environmental classifications are obtained from hits against a custom database, MetaGenomes On-Line, which contains 49 million predicted environmental peptides. Each predicted viral metagenomic ORF run through the VIROME pipeline is placed into one of seven ORF classes, thus, every sequence receives a meaningful annotation. Additionally, the pipeline includes quality control measures to remove contaminating and poor quality sequence and assesses the potential amount of cellular DNA contamination in a viral metagenome library by screening for rRNA genes. Access to the VIROME pipeline and analysis results are provided through a web-application interface that is dynamically linked to a relational back-end database. The VIROME web-application interface is designed to allow users flexibility in retrieving sequences (reads, ORFs, predicted peptides) and search results for focused secondary analyses.

12.
Appl Environ Microbiol ; 76(8): 2673-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20154108

RESUMEN

The viral metagenome within an activated sludge microbial assemblage was sampled using culture-dependent and culture-independent methods and compared to the diversity of activated sludge bacterial taxa. A total of 70 unique cultured bacterial isolates, 24 cultured bacteriophages, 829 bacterial metagenomic clones of 16S rRNA genes, and 1,161 viral metagenomic clones were subjected to a phylogenetic analysis.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biodiversidad , Metagenoma , Aguas del Alcantarillado/virología , Virus/clasificación , Virus/genética , Bacterias/aislamiento & purificación , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Viral/química , ADN Viral/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cultivo de Virus , Virus/aislamiento & purificación
13.
Methods Mol Biol ; 502: 279-89, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19082562

RESUMEN

Current appreciation of the vast expanse of prokaryotic diversity has largely come through molecular phylogenetic exploration of sequence diversity within the universally conserved gene for small subunit ribosomal RNA (16S rDNA). A plethora of methodologies for characterizing the diversity and composition of bacterial communities is based on sequence polymorphisms within this single gene. By comparison, no gene is universally shared among viruses or bacteriophages, which has prevented broad scale characterization of viral diversity within microbial ecosystems. With the reduction in DNA sequencing costs and wide availability of bioinformatics software, the tools of whole genome shotgun sequencing are now beginning to be applied to the characterization of genetic diversity within whole microbial communities. Such metagenomic approaches are ideally suited to the characterization of natural assemblages of viruses, because of the typically small, coding-dense nature of viral genomes. Data from a limited number of characterized viral metagenome libraries within a range of microbial ecosystems indicates that viral assemblages are comprised of between approximately 1,000 to a million different genotypes. Furthermore, viral assemblages typically contain a large proportion of completely novel genes and are likely to be the largest reservoir of unexplored genetic diversity on earth. Here, we present a conceptual framework for characterization of viral assemblages through metagenomic approaches.


Asunto(s)
Bacteriófagos/genética , Genoma Viral/genética , Análisis de Secuencia de ADN/métodos , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Biodiversidad , Biología Computacional/métodos , ADN Viral/química , ADN Viral/genética , ADN Viral/aislamiento & purificación , Bases de Datos Genéticas , Variación Genética
14.
Res Microbiol ; 159(5): 349-57, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18565737

RESUMEN

Despite the predominance of aquatic environments on the planet Earth, microbial abundance and diversity within soil environments exceed that of the aquatic realm. Most of what we know of viral ecology within natural systems has come through investigations of aquatic environments. However, the 'aquatic-bias' in viral ecology is beginning to change as the cultivation-independent approaches, which revealed the extraordinary abundance and diversity of viruses within aquatic systems, are now being applied to soils. This review briefly summarizes recent investigations of viral abundance and diversity in soil environments.


Asunto(s)
Bacterias/virología , Agua Dulce/virología , Agua de Mar/virología , Microbiología del Suelo , Virus/aislamiento & purificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Biodiversidad , Agua Dulce/microbiología , Agua de Mar/microbiología , Virus/genética
15.
Appl Environ Microbiol ; 74(5): 1453-63, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18192407

RESUMEN

Obtaining an unbiased view of the phylogenetic composition and functional diversity within a microbial community is one central objective of metagenomic analysis. New technologies, such as 454 pyrosequencing, have dramatically reduced sequencing costs, to a level where metagenomic analysis may become a viable alternative to more-focused assessments of the phylogenetic (e.g., 16S rRNA genes) and functional diversity of microbial communities. To determine whether the short (approximately 100 to 200 bp) sequence reads obtained from pyrosequencing are appropriate for the phylogenetic and functional characterization of microbial communities, the results of BLAST and COG analyses were compared for long (approximately 750 bp) and randomly derived short reads from each of two microbial and one virioplankton metagenome libraries. Overall, BLASTX searches against the GenBank nr database found far fewer homologs within the short-sequence libraries. This was especially pronounced for a Chesapeake Bay virioplankton metagenome library. Increasing the short-read sampling depth or the length of derived short reads (up to 400 bp) did not completely resolve the discrepancy in BLASTX homolog detection. Only in cases where the long-read sequence had a close homolog (low BLAST E-score) did the derived short-read sequence also find a significant homolog. Thus, more-distant homologs of microbial and viral genes are not detected by short-read sequences. Among COG hits, derived short reads sampled at a depth of two short reads per long read missed up to 72% of the COG hits found using long reads. Noting the current limitation in computational approaches for the analysis of short sequences, the use of short-read-length libraries does not appear to be an appropriate tool for the metagenomic characterization of microbial communities.


Asunto(s)
Biología Computacional/métodos , Ecosistema , Variación Genética , Genómica/tendencias , Análisis de Secuencia de ADN/métodos , Simulación por Computador , Biblioteca de Genes , Genes Virales/genética , Genómica/métodos , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA