Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Dev Dis ; 5(2)2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29751502

RESUMEN

3′-5′-cyclic adenosine monophosphate (cAMP) is a signaling messenger produced in response to the stimulation of cellular receptors, and has a myriad of functional applications depending on the cell type. In the heart, cAMP is responsible for regulating the contraction rate and force; however, cAMP is also involved in multiple other functions. Compartmentation of cAMP production may explain the specificity of signaling following a stimulus. In particular, transverse tubules (T-tubules) and caveolae have been found to be critical structural components for the spatial confinement of cAMP in cardiomyocytes, as exemplified by beta-adrenergic receptor (β-ARs) signaling. Pathological alterations in cardiomyocyte microdomain architecture led to a disruption in compartmentation of the cAMP signal. In this review, we discuss the difference between atrial and ventricular cardiomyocytes in respect to microdomain organization, and the pathological changes of atrial and ventricular cAMP signaling in response to myocyte dedifferentiation. In addition, we review the role of localized phosphodiesterase (PDE) activity in constraining the cAMP signal. Finally, we discuss microdomain biogenesis and maturation of cAMP signaling with the help of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Understanding these mechanisms may help to overcome the detrimental effects of pathological structural remodeling.

2.
Cell Rep ; 23(2): 459-469, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642004

RESUMEN

Cardiomyocytes from the apex but not the base of the heart increase their contractility in response to ß2-adrenoceptor (ß2AR) stimulation, which may underlie the development of Takotsubo cardiomyopathy. However, both cell types produce comparable cytosolic amounts of the second messenger cAMP. We investigated this discrepancy using nanoscale imaging techniques and found that, structurally, basal cardiomyocytes have more organized membranes (higher T-tubular and caveolar densities). Local membrane microdomain responses measured in isolated basal cardiomyocytes or in whole hearts revealed significantly smaller and more short-lived ß2AR/cAMP signals. Inhibition of PDE4, caveolar disruption by removing cholesterol or genetic deletion of Cav3 eliminated differences in local cAMP production and equilibrated the contractile response to ß2AR. We conclude that basal cells possess tighter control of cAMP because of a higher degree of signaling microdomain organization. This provides varying levels of nanostructural control for cAMP-mediated functional effects that orchestrate macroscopic, regional physiological differences within the heart.


Asunto(s)
Membrana Celular/química , AMP Cíclico/metabolismo , Corazón/anatomía & histología , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Caveolina 3/deficiencia , Caveolina 3/genética , Membrana Celular/metabolismo , Colesterol/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Femenino , Corazón/fisiología , Isoproterenol/farmacología , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Transducción de Señal/efectos de los fármacos , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...