Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 175: 170-185, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160858

RESUMEN

Proliferation and invasion are two key drivers of tumor growth that are traditionally considered independent multicellular processes. However, these processes are intrinsically coupled through a maximum carrying capacity, i.e., the maximum spatial cell concentration supported by the tumor volume, total cell count, nutrient access, and mechanical properties of the tissue stroma. We explored this coupling of proliferation and invasion through in vitro and in silico methods where we modulated the mechanical properties of the tumor and the surrounding extracellular matrix. E-cadherin expression and stromal collagen concentration were manipulated in a tunable breast cancer spheroid to determine the overall impacts of these tumor variables on net tumor proliferation and continuum invasion. We integrated these results into a mixed-constitutive formulation to computationally delineate the influences of cellular and extracellular adhesion, stiffness, and mechanical properties of the extracellular matrix on net proliferation and continuum invasion. This framework integrates biological in vitro data into concise computational models of invasion and proliferation to provide more detailed physical insights into the coupling of these key tumor processes and tumor growth. STATEMENT OF SIGNIFICANCE: Tumor growth involves expansion into the collagen-rich stroma through intrinsic coupling of proliferation and invasion within the tumor continuum. These processes are regulated by a maximum carrying capacity that is determined by the total cell count, tumor volume, nutrient access, and mechanical properties of the surrounding stroma. The influences of biomechanical parameters (i.e., stiffness, cell elongation, net proliferation rate and cell-ECM friction) on tumor proliferation or invasion cannot be unraveled using experimental methods alone. By pairing a tunable spheroid system with computational modeling, we delineated the interdependencies of each system parameter on tumor proliferation and continuum invasion, and established a concise computational framework for studying tumor mechanobiology.


Asunto(s)
Neoplasias de la Mama , Colágeno , Humanos , Femenino , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Neoplasias de la Mama/patología , Física , Proliferación Celular , Línea Celular Tumoral , Microambiente Tumoral
2.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333379

RESUMEN

The fallopian tube has an essential role in several physiological and pathological processes from pregnancy to ovarian cancer. However, there are no biologically relevant models to study its pathophysiology. The state-of-the-art organoid model has been compared to two-dimensional tissue sections and molecularly assessed providing only cursory analyses of the model's accuracy. We developed a novel multi-compartment organoid model of the human fallopian tube that was meticulously tuned to reflect the compartmentalization and heterogeneity of the tissue's composition. We validated this organoid's molecular expression patterns, cilia-driven transport function, and structural accuracy through a highly iterative platform wherein organoids are compared to a three-dimensional, single-cell resolution reference map of a healthy, transplantation-quality human fallopian tube. This organoid model was precision-engineered to match the human microanatomy. One sentence summary: Tunable organoid modeling and CODA architectural quantification in tandem help design a tissue-validated organoid model.

3.
Prog Biophys Mol Biol ; 167: 46-62, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34329646

RESUMEN

The present study scrutinized some of the crucial advancements in the synthesis and functionalisation of self-assembling biomaterials for application in biomedicine. The basic concept of self-organization was discussed along with the mechanisms and methods involved in its implementation with biomaterials. Further, several recent applications of this technology in the biological and medical domain, and the avenues for future research and development were presented. This study brought to focus the vast potential of basic and applied research involved, especially in the context of hybrids and composites, as well as the difference in pace of new developments for different types of biomolecular materials. As nanobiotechnology matures, the tools and techniques available for developing and controlling self-assembled biomaterials as well as studying their interaction with biological tissue, will grow exponentially. Presently, self-assembly remains a potent tool for the synthesis of functional biomaterials.


Asunto(s)
Materiales Biocompatibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA