Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38659843

RESUMEN

In patients with atrophic age-related macular degeneration, subretinal photovoltaic implant (PRIMA) provided visual acuity up to 20/440, matching its 100µm pixels size. Next-generation implants with smaller pixels should significantly improve the acuity. This study in rats evaluates removal of a subretinal implant, replacement with a newer device, and the resulting grating acuity in-vivo. Six weeks after the initial implantation with planar and 3-dimensional devices, the retina was re-detached, and the devices were successfully removed. Histology demonstrated a preserved inner nuclear layer. Re-implantation of new devices into the same location demonstrated retinal re-attachment to a new implant. New devices with 22µm pixels increased the grating acuity from the 100µm capability of PRIMA implants to 28µm, reaching the limit of natural resolution in rats. Reimplanted devices exhibited the same stimulation threshold as for the first implantation of the same implants in a control group. This study demonstrates the feasibility of safely upgrading the subretinal photovoltaic implants to improve prosthetic visual acuity.

2.
J Neural Eng ; 21(1)2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38364290

RESUMEN

Objective.Retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables increasing prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigated 3-dimensional (3d) structures on top of photovoltaic arrays for enhanced penetration of the electric field, permitting higher resolution implants.Approach.3D COMSOL models of subretinal photovoltaic arrays were developed to accurately quantify the electrodynamics during stimulation and verified through comparison to flat photovoltaic arrays. Models were applied to optimize the design of 3D electrode structures (pillars and honeycombs). Return electrodes on honeycomb walls vertically align the electric field with bipolar cells for optimal stimulation. Pillars elevate the active electrode, thus improving proximity to target neurons. The optimized 3D structures were electroplated onto existing flat subretinal prostheses.Main results.Simulations demonstrate that despite exposed conductive sidewalls, charge mostly flows via high-capacitance sputtered iridium oxide films topping the 3D structures. The 24µm height of honeycomb structures was optimized for integration with the inner nuclear layer cells in the rat retina, whilst 35µm tall pillars were optimized for penetrating the debris layer in human patients. Implantation of released 3D arrays demonstrates mechanical robustness, with histology demonstrating successful integration of 3D structures with the rat retinain-vivo.Significance. Electroplated 3D honeycomb structures produce vertically oriented electric fields, providing low stimulation thresholds, high spatial resolution, and high contrast for pixel sizes down to 20µm. Pillar electrodes offer an alternative for extending past the debris layer. Electroplating of 3D structures is compatible with the fabrication process of flat photovoltaic arrays, enabling much more efficient retinal stimulation.


Asunto(s)
Miembros Artificiales , Degeneración Retiniana , Prótesis Visuales , Humanos , Ratas , Animales , Prótesis e Implantes , Retina/fisiología , Neuronas/fisiología , Estimulación Eléctrica , Electrodos Implantados
3.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014082

RESUMEN

Objective: High-resolution retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables an increase in prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigate 3-dimensional structures on top of the photovoltaic arrays for enhanced penetration of electric field to permit higher-resolution implants. Approach: We developed 3D COMSOL models of subretinal photovoltaic arrays that accurately quantify the device electrodynamics during stimulation and verified it experimentally through comparison with the standard (flat) photovoltaic arrays. The models were then applied to optimise the design of 3D electrode structures (pillars and honeycombs) to efficiently stimulate the inner retinal neurons. The return electrodes elevated on top of the honeycomb walls surrounding each pixel orient the electric field inside the cavities vertically, aligning it with bipolar cells for optimal stimulation. Alternatively, pillars elevate the active electrode into the inner nuclear layer, improving proximity to the target neurons. Modelling results informed a microfabrication process of electroplating the 3D electrode structures on top of the existing flat subretinal prosthesis. Main results: Simulations demonstrate that despite the conductive sidewalls of the 3D electrodes being exposed to electrolyte, most of the charge flows via the high-capacitance sputtered Iridium Oxide film that caps the top of the 3D structures. The 24 µm height of the electroplated honeycomb structures was optimised for integration with the inner nuclear layer cells in rat retina, while 35 µm height of the pillars was optimized for penetrating the debris layer in human patients. Release from the wafer and implantation of the 3D arrays demonstrated that they are mechanically robust to withstand the associated forces. Histology demonstrated successful integration of the 3D structures with the rat retina in-vivo. Significance: Electroplated 3D honeycomb structures produce a vertically oriented electric field that offers low stimulation threshold, high spatial resolution and high contrast for the retinal implants with pixel sizes down to 20µm in width. Pillar electrodes offer an alternative configuration for extending the stimulation past the debris layers. Electroplating of the 3D structures is compatible with the fabrication process of the flat photovoltaic arrays, thereby enabling much more efficient stimulation than in their original flat configuration.

4.
Proc Natl Acad Sci U S A ; 120(42): e2307380120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37831740

RESUMEN

In patients blinded by geographic atrophy, a subretinal photovoltaic implant with 100 µm pixels provided visual acuity closely matching the pixel pitch. However, such flat bipolar pixels cannot be scaled below 75 µm, limiting the attainable visual acuity. This limitation can be overcome by shaping the electric field with 3-dimensional (3-D) electrodes. In particular, elevating the return electrode on top of the honeycomb-shaped vertical walls surrounding each pixel extends the electric field vertically and decouples its penetration into tissue from the pixel width. This approach relies on migration of the retinal cells into the honeycomb wells. Here, we demonstrate that majority of the inner retinal neurons migrate into the 25 µm deep wells, leaving the third-order neurons, such as amacrine and ganglion cells, outside. This enables selective stimulation of the second-order neurons inside the wells, thus preserving the intraretinal signal processing in prosthetic vision. Comparable glial response to that with flat implants suggests that migration and separation of the retinal cells by the walls does not cause additional stress. Furthermore, retinal migration into the honeycombs does not negatively affect its electrical excitability, while grating acuity matches the pixel pitch down to 40 µm and reaches the 27 µm limit of natural resolution in rats with 20 µm pixels. These findings pave the way for 3-D subretinal prostheses with pixel sizes of cellular dimensions.


Asunto(s)
Poríferos , Neuronas Retinianas , Prótesis Visuales , Humanos , Ratas , Animales , Implantación de Prótesis , Retina/fisiología , Visión Ocular , Estimulación Eléctrica
5.
bioRxiv ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546971

RESUMEN

Photovoltaic subretinal prosthesis (PRIMA) enables restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution limited by the 100 µm pixel size. Since decreasing the pixel size below 75 µm in the current bipolar geometry is impossible, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 9 months post-implantation in aged rats. With both flat and 3D implants, VEP amplitude decreased after the day of implantation by more than 3-fold, and gradually recovered over about 3 months. With 25 µm high honeycomb walls, the majority of bipolar cells migrate into the wells, while amacrine and ganglion cells remain above the cavities, which is essential for selective network-mediated stimulation of the second-order neurons. Retinal thickness and full-field stimulation threshold with 40 µm-wide honeycomb pixels were comparable to those with planar devices - 0.05 mW/mm2 with 10ms pulses. However, fewer cells from the inner nuclear layer migrated into the 20 µm-wide wells, and stimulation threshold increased over 5 months, before stabilizing at about 0.08 mW/mm2. Such threshold is significantly lower than 1.8 mW/mm2 with a previous design of flat bipolar pixels, confirming the promise of the 3D honeycomb-based approach to high resolution subretinal prosthesis.

6.
Sci Rep ; 13(1): 8205, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-37211572

RESUMEN

Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.


Asunto(s)
Ciliopatías , Degeneración Retiniana , Ratones , Humanos , Animales , Epitelio Pigmentado de la Retina , Cilios/fisiología , Modelos Animales de Enfermedad , Proteínas Supresoras de Tumor , Proteínas Asociadas a Microtúbulos
7.
Nat Commun ; 13(1): 6627, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333326

RESUMEN

Localized stimulation of the inner retinal neurons for high-acuity prosthetic vision requires small pixels and minimal crosstalk from the neighboring electrodes. Local return electrodes within each pixel limit the crosstalk, but they over-constrain the electric field, thus precluding the efficient stimulation with subretinal pixels smaller than 55 µm. Here we demonstrate a high-resolution prosthetic vision based on a novel design of a photovoltaic array, where field confinement is achieved dynamically, leveraging the adjustable conductivity of the diodes under forward bias to turn the designated pixels into transient returns. We validated the computational modeling of the field confinement in such an optically-controlled circuit by in-vitro and in-vivo measurements. Most importantly, using this strategy, we demonstrated that the grating acuity with 40 µm pixels matches the pixel pitch, while with 20 µm pixels, it reaches the 28 µm limit of the natural visual resolution in rats. This method enables customized field shaping based on individual retinal thickness and distance from the implant, paving the way to higher acuity of prosthetic vision in atrophic macular degeneration.


Asunto(s)
Prótesis Visuales , Ratas , Animales , Agudeza Visual , Retina/fisiología , Visión Ocular , Electrónica , Estimulación Eléctrica
8.
J Neural Eng ; 19(5)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36044878

RESUMEN

Objective.Retinal prostheses aim at restoring sight in patients with retinal degeneration by electrically stimulating the inner retinal neurons. Clinical trials with patients blinded by atrophic age-related macular degeneration using the PRIMA subretinal implant, a 2 × 2 mm array of 100µm-wide photovoltaic pixels, have demonstrated a prosthetic visual acuity closely matching the pixel size. Further improvement in resolution requires smaller pixels, which, with the current bipolar design, necessitates more intense stimulation.Approach.We examine the lower limit of the pixel size for PRIMA implants by modeling the electric field, leveraging the clinical benchmarks, and using animal data to assess the stimulation strength and contrast of various patterns. Visually evoked potentials measured in Royal College of Surgeons rats with photovoltaic implants composed of 100µm and 75µm pixels were compared to clinical thresholds with 100µm pixels. Electrical stimulation model calibrated by the clinical and rodent data was used to predict the performance of the implant with smaller pixels.Main results.PRIMA implants with 75µm bipolar pixels under the maximum safe near-infrared (880 nm) illumination of 8 mW mm-2with 30% duty cycle (10 ms pulses at 30 Hz) should provide a similar perceptual brightness as with 100µm pixels under 3 mW mm-2irradiance, used in the current clinical trials. Contrast of the Landolt C pattern scaled down to 75µm pixels is also similar under such illumination to that with 100µm pixels, increasing the maximum acuity from 20/420 to 20/315.Significance.Computational modeling defines the minimum pixel size of the PRIMA implants as 75µm. Increasing the implant width from 2 to 3 mm and reducing the pixel size from 100 to 75µm will nearly quadrupole the number of pixels, which should be very beneficial for patients. Smaller pixels of the same bipolar flat geometry would require excessively intense illumination, and therefore a different pixel design should be considered for further improvement in resolution.


Asunto(s)
Degeneración Retiniana , Neuronas Retinianas , Prótesis Visuales , Animales , Estimulación Eléctrica/métodos , Humanos , Estimulación Luminosa , Ratas , Retina/fisiología , Degeneración Retiniana/cirugía , Roedores
9.
J Neural Eng ; 18(3)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33592588

RESUMEN

Objective.To restore central vision in patients with atrophic age-related macular degeneration, we replace the lost photoreceptors with photovoltaic pixels, which convert light into current and stimulate the secondary retinal neurons. Clinical trials demonstrated prosthetic acuity closely matching the sampling limit of the 100µm pixels, and hence smaller pixels are required for improving visual acuity. However, with smaller flat bipolar pixels, the electric field penetration depth and the photodiode responsivity significantly decrease, making the device inefficient. Smaller pixels may be enabled by (a) increasing the diode responsivity using vertical p-n junctions and (b) directing the electric field in tissue vertically. Here, we demonstrate such novel photodiodes and test the retinal stimulation in a vertical electric field.Approach.Arrays of silicon photodiodes of 55, 40, 30, and 20µm in width, with vertical p-n junctions, were fabricated. The electric field in the retina was directed vertically using a common return electrode at the edge of the device. Optical and electronic performance of the diodes was characterizedin-vitro, and retinal stimulation threshold measured by recording the visually evoked potentials in rats with retinal degeneration.Main results.The photodiodes exhibited sufficiently low dark current (<10 pA) and responsivity at 880 nm wavelength as high as 0.51 A W-1, with 85% internal quantum efficiency, independent of pixel size. Field mapping in saline demonstrated uniformity of the pixel performance in the array. The full-field stimulation threshold was as low as 0.057±0.029mW mm-2with 10 ms pulses, independent of pixel size.Significance.Photodiodes with vertical p-n junctions demonstrated excellent charge collection efficiency independent of pixel size, down to 20µm. Vertically oriented electric field provides a stimulation threshold that is independent of pixel size. These results are the first steps in validation of scaling down the photovoltaic pixels for subretinal stimulation.


Asunto(s)
Degeneración Retiniana , Neuronas Retinianas , Prótesis Visuales , Animales , Estimulación Eléctrica , Humanos , Ratas , Degeneración Retiniana/terapia , Neuronas Retinianas/fisiología , Silicio
10.
Transl Vis Sci Technol ; 8(4): 19, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31402999

RESUMEN

PURPOSE: We investigated the effects of various retinal laser therapies on preservation of the photoreceptors in an animal model of Mer tyrosine kinase receptor (MERTK)-related retinitis pigmentosa (RP). These modalities included photocoagulation with various pattern densities, selective RPE therapy (SRT), and nondamaging retinal therapy (NRT). METHODS: Laser treatments were performed on right eyes of RCS rats, using one of three laser modalities. For photocoagulation, six pattern densities (spot spacings of 0.5, 1, 1.5, 3, 4, and 5 spot diameters) were delivered in 19-day-old animals, prior to the onset of photoreceptor degeneration, to determine the optimal treatment density for the best preservation of photoreceptors. The left eye was used as control. Rats were monitored for 6 months after treatment using electroretinography, optical coherence tomography, and histology. RESULTS: Photocoagulation resulted in long-term preservation of photoreceptors, manifested morphologically and functionally, with the extent of the benefit dependent on the laser pattern density. Eyes treated with a 1.5 spot size spacing showed the best morphologic and functional preservation during the 6-month follow-up. SRT-treated eyes exhibited short-term morphologic preservation, but no functional benefit. NRT-treated eyes did not show any observable preservation benefit from the treatment. CONCLUSIONS: In a rodent model of MERTK-related RP, pattern photocoagulation of about 15% of the photoreceptors (1.5 spot diameter spacing) provides long-term preservation of photoreceptors in the treatment area. TRANSLATIONAL RELEVANCE: Availability of retinal lasers in ophthalmic practice enables rapid translation of our study to clinical testing and may help preserve the sight in patients with photoreceptor degeneration.

11.
Sci Rep ; 9(1): 10657, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337815

RESUMEN

High-resolution visual prostheses require small, densely packed pixels, but limited penetration depth of the electric field formed by a planar electrode array constrains such miniaturization. We present a novel honeycomb configuration of an electrode array with vertically separated active and return electrodes designed to leverage migration of retinal cells into voids in the subretinal space. Insulating walls surrounding each pixel decouple the field penetration depth from the pixel width by aligning the electric field vertically, enabling a decrease of the pixel size down to cellular dimensions. We demonstrate that inner retinal cells migrate into the 25 µm deep honeycomb wells as narrow as 18 µm, resulting in more than half of these cells residing within the electrode cavities. Immune response to honeycombs is comparable to that with planar arrays. Modeled stimulation threshold current density with honeycombs does not increase substantially with reduced pixel size, unlike quadratic increase with planar arrays. This 3-D electrode configuration may enable functional restoration of central vision with acuity better than 20/100 for millions of patients suffering from age-related macular degeneration.


Asunto(s)
Neuronas/fisiología , Diseño de Prótesis , Retina/cirugía , Degeneración Retiniana/cirugía , Prótesis Visuales , Animales , Modelos Animales de Enfermedad , Electrodos Implantados , Implantación de Prótesis , Ratas , Retina/fisiopatología , Degeneración Retiniana/fisiopatología
12.
Transl Vis Sci Technol ; 8(3): 30, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31171997

RESUMEN

PURPOSE: To demonstrate survival and integration of mature photoreceptors transplanted with the retinal pigment epithelium (RPE). METHODS: Full-thickness retina with attached RPE was harvested from healthy adult rats. Grafts were implanted into two rat models of retinal degeneration, Royal College of Surgeons (RCS) and S334ter-3. Survival of the host and transplanted retina was monitored using optical coherence tomography (OCT) for up to 6 months. The retinal structure and synaptogenesis between the host and transplant was assessed by histology and immunohistochemistry. RESULTS: OCT and histology demonstrated a well-preserved photoreceptor layer with inner and outer segments, while the inner retinal layers of the transplant largely disappeared. Grafts, including RPE, survived better than without and the transplanted RPE appeared as a monolayer integrated with the native one. Synaptogenesis was observed through sprouting of new dendrites from the host bipolar cells and synaptic connections forming with cells of the transplant. However, in many samples, a glial fibrillary acidic protein-positive membrane separated the host retina and the graft. CONCLUSIONS: Presence of RPE in the graft improved the survival of transplanted photoreceptors. Functional integration between the transplant and the host retina is likely to be further enhanced if formation of a glial seal could be prevented. Transplantation of the mature photoreceptors with RPE may be a practical approach to restoration of sight in retinal degeneration. TRANSLATIONAL RELEVANCE: This approach to restoration of sight in patients with photoreceptor degeneration can be rapidly advanced to clinical testing. In patients with central scotoma, autologous transplantation of the peripheral retina can be an option.

13.
Mol Neurodegener ; 14(1): 2, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30634998

RESUMEN

BACKGROUND: Uncontrolled microglial activation contributes to the pathogenesis of various neurodegenerative diseases. Previous studies have shown that proinflammatory microglia are powered by glycolysis, which relays on high levels of glucose uptake. This study aimed to understand how glucose uptake is facilitated in active microglia and whether microglial activation can be controlled by restricting glucose uptake. METHODS: Primary murine brain microglia, BV2 cells and the newly established microglial cell line B6M7 were treated with LPS (100 ng/ml) + IFNγ (100 ng/ml) or IL-4 (20 ng/ml) for 24 h. The expression of glucose transporters (GLUTs) was examined by PCR and Western blot. Glucose uptake by microglia was inhibited using the GLUT1-specific inhibitor STF31. The metabolic profiles were tested using the Glycolysis Stress Test and Mito Stress Test Kits using the Seahorse XFe96 Analyser. Inflammatory gene expression was examined by real-time RT-PCR and protein secretion by cytokine beads array. The effect of STF31 on microglial activation and neurodegeneraion was further tested in a mouse model of light-induced retinal degeneration. RESULTS: The mRNA and protein of GLUT1, 3, 4, 5, 6, 8, 9, 10, 12, and 13 were detected in microglia. The expression level of GLUT1 was the highest among all GLUTs detected. LPS + IFNγ treatment further increased GLUT1 expression. STF31 dose-dependently reduced glucose uptake and suppressed Extracellular Acidification Rate (ECAR) in naïve, M(LPS + IFNγ) and M(IL-4) microglia. The treatment also prevented the upregulation of inflammatory cytokines including TNFα, IL-1ß, IL-6, and CCL2 in M(LPS + IFNγ) microglia. Interestingly, the Oxygen Consumption Rates (OCR) was increased in M(LPS + IFNγ) microglia but reduced in M(IL-4) microglia by STF31 treatment. Intraperitoneal injection of STF31 reduced light-induced microglial activation and retinal degeneration. CONCLUSION: Glucose uptake in microglia is facilitated predominately by GLUT1, particularly under inflammatory conditions. Targeting GLUT1 could be an effective approach to control neuroinflammation.


Asunto(s)
Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Microglía/metabolismo , Animales , Glucólisis/fisiología , Ratones , Ratones Endogámicos C57BL , Degeneración Retiniana/metabolismo
14.
Am J Pathol ; 188(4): 1007-1020, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29452101

RESUMEN

The suppressor of cytokine signaling protein 3 (SOCS3) critically controls immune cell activation, although its role in macrophage polarization and function remains controversial. Using experimental autoimmune uveoretinitis (EAU) as a model, we show that inflammation-mediated retinal degeneration is exaggerated and retinal angiogenesis is accelerated in mice with SOCS3 deficiency in myeloid cells (LysMCre/+SOCS3fl/fl). At the acute stage of EAU, the population of infiltrating neutrophils was increased and the population of macrophages decreased in LysMCre/+SOCS3fl/fl mice compared with that in wild-type (WT) mice. Real-time RT-PCR showed that the expression of tumor necrosis factor-α, IL-1ß, interferon-γ, granulocyte-macrophage colony-stimulating factor, and arginase-1 was significantly higher in the LysMCre/+SOCS3fl/fl EAU retina in contrast to the WT EAU retina. The percentage of arginase-1+ infiltrating cells was significantly higher in the LysMCre/+SOCS3fl/fl EAU retina than that in the WT EAU retina. In addition, bone marrow-derived macrophages and neutrophils from the LysMCre/+SOCS3fl/fl mice express significantly higher levels of chemokine (C-C motif) ligand 2 and arginase-1 compared with those from WT mice. Inhibition of arginase using an l-arginine analog amino-2-borono-6-hexanoic suppressed inflammation-induced retinal angiogenesis without affecting the severity of inflammation. Our results suggest that SOCS3 critically controls the phenotype and function of macrophages and neutrophils under inflammatory conditions and loss of SOCS3 promotes the angiogenic phenotype of the cells through up-regulation of arginase-1.


Asunto(s)
Arginasa/genética , Enfermedades Autoinmunes/genética , Células Mieloides/metabolismo , Neovascularización Patológica/metabolismo , Degeneración Retiniana/patología , Proteína 3 Supresora de la Señalización de Citocinas/deficiencia , Regulación hacia Arriba/genética , Enfermedades de la Úvea/genética , Animales , Arginasa/antagonistas & inhibidores , Arginasa/metabolismo , Células de la Médula Ósea/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
15.
J Innate Immun ; 9(6): 529-545, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28772263

RESUMEN

In this paper, we report previously unknown roles for collectin-11 (CL-11, a soluble C-type lectin) in modulating the retinal pigment epithelial (RPE) cell functions of phagocytosis and cytokine production. We found that CL-11 and its carbohydrate ligand are expressed in both the murine and human neural retina; these resemble each other in terms of RPE and photoreceptor cells. Functional analysis of murine RPE cells showed that CL-11 facilitates the opsonophagocytosis of photoreceptor outer segments and apoptotic cells, and also upregulates IL-10 production. Mechanistic analysis revealed that calreticulin on the RPE cells is required for CL-11-mediated opsonophagocytosis whereas signal-regulatory protein α and mannosyl residues on the cells are involved in the CL-11-mediated upregulation of IL-10 production. This study is the first to demonstrate the role of CL-11 and the molecular mechanisms involved in modulating RPE cell phagocytosis and cytokine production. It provides a new insight into retinal health and disease and has implications for other phagocytic cells.


Asunto(s)
Calreticulina/metabolismo , Colectinas/metabolismo , Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Animales , Células Cultivadas , Colectinas/genética , Citofagocitosis , Humanos , Interleucina-10/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Epitelio Pigmentado de la Retina/patología , Pigmentos Retinianos/metabolismo , Regulación hacia Arriba
16.
J Neuroinflammation ; 12: 201, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26527153

RESUMEN

BACKGROUND: Reactive microglia are commonly seen in retinal degenerative diseases, and neurotoxic microglia responses can contribute to photoreceptor cell death. We and others have previously shown that translocator protein (18 kDa) (TSPO) is highly induced in retinal degenerations and that the selective TSPO ligand XBD173 (AC-5216, emapunil) exerts strong anti-inflammatory effects on microglia in vitro and ex vivo. Here, we investigated whether targeting TSPO with XBD173 has immuno-modulatory and neuroprotective functions in two mouse models of acute retinal degeneration using bright white light exposure. METHODS: BALB/cJ and Cx3cr1(GFP/+) mice received intraperitoneal injections of 10 mg/kg XBD173 or vehicle for five consecutive days, starting 1 day prior to exposure to either 15,000 lux white light for 1 h or 50,000 lux focal light for 10 min, respectively. The effects of XBD173 treatment on microglia and Müller cell reactivity were analyzed by immuno-stainings of retinal sections and flat mounts, fluorescence-activated cell sorting (FACS) analysis, and mRNA expression of microglia markers using quantitative real-time PCR (qRT-PCR). Optical coherence tomography (OCT), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings, and morphometric analyses were used to quantify the extent of retinal degeneration and photoreceptor apoptosis. RESULTS: Four days after the mice were challenged with bright white light, a large number of amoeboid-shaped alerted microglia appeared in the degenerating outer retina, which was nearly completely prevented by treatment with XBD173. This treatment also down-regulated the expression of TSPO protein in microglia but did not change the TSPO levels in the retinal pigment epithelium (RPE). RT-PCR analysis showed that the microglia/macrophage markers Cd68 and activated microglia/macrophage whey acidic protein (Amwap) as well as the pro-inflammatory genes Ccl2 and Il6 were reduced after XBD173 treatment. Light-induced degeneration of the outer retina was nearly fully blocked by XBD173 treatment. We further confirmed these findings in an independent mouse model of focal light damage. Retinas of animals receiving XBD173 therapy displayed significantly more ramified non-reactive microglia and more viable arrestin-positive cone photoreceptors than vehicle controls. CONCLUSIONS: Targeting TSPO with XBD173 effectively counter-regulates microgliosis and ameliorates light-induced retinal damage, highlighting a new pharmacological concept for the treatment of retinal degenerations.


Asunto(s)
Microglía/metabolismo , Purinas/farmacología , Receptores de GABA/metabolismo , Degeneración Retiniana/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Degeneración Retiniana/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA