Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(6): 942-958.e13, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38262414

RESUMEN

Neurons express various combinations of neurotransmitter receptor (NR) subunits and receive inputs from multiple neuron types expressing different neurotransmitters. Localizing NR subunits to specific synaptic inputs has been challenging. Here, we use epitope-tagged endogenous NR subunits, expansion light-sheet microscopy, and electron microscopy (EM) connectomics to molecularly characterize synapses in Drosophila. We show that in directionally selective motion-sensitive neurons, different multiple NRs elaborated a highly stereotyped molecular topography with NR localized to specific domains receiving cell-type-specific inputs. Developmental studies suggested that NRs or complexes of them with other membrane proteins determine patterns of synaptic inputs. In support of this model, we identify a transmembrane protein selectively associated with a subset of spatially restricted synapses and demonstrate its requirement for synapse formation through genetic analysis. We propose that mechanisms that regulate the precise spatial distribution of NRs provide a molecular cartography specifying the patterns of synaptic connections onto dendrites.


Asunto(s)
Conectoma , Sinapsis/fisiología , Neuronas Motoras/metabolismo , Microscopía Electrónica , Receptores de GABA-A/metabolismo
2.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873314

RESUMEN

Neurons express different combinations of neurotransmitter receptor (NR) subunits and receive inputs from multiple neuron types expressing different neurotransmitters. Localizing NR subunits to specific synaptic inputs has been challenging. Here we use epitope tagged endogenous NR subunits, expansion light-sheet microscopy, and EM connectomics to molecularly characterize synapses in Drosophila. We show that in directionally selective motion sensitive neurons, different multiple NRs elaborated a highly stereotyped molecular topography with NR localized to specific domains receiving cell-type specific inputs. Developmental studies suggested that NRs or complexes of them with other membrane proteins determines patterns of synaptic inputs. In support of this model, we identify a transmembrane protein associated selectively with a subset of spatially restricted synapses and demonstrate through genetic analysis its requirement for synapse formation. We propose that mechanisms which regulate the precise spatial distribution of NRs provide a molecular cartography specifying the patterns of synaptic connections onto dendrites.

3.
Nat Commun ; 10(1): 1318, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30899013

RESUMEN

Macroautophagy is an evolutionarily conserved cellular maintenance program, meant to protect the brain from premature aging and neurodegeneration. How neuronal autophagy, usually loosing efficacy with age, intersects with neuronal processes mediating brain maintenance remains to be explored. Here, we show that impairing autophagy in the Drosophila learning center (mushroom body, MB) but not in other brain regions triggered changes normally restricted to aged brains: impaired associative olfactory memory as well as a brain-wide ultrastructural increase of presynaptic active zones (metaplasticity), a state non-compatible with memory formation. Mechanistically, decreasing autophagy within the MBs reduced expression of an NPY-family neuropeptide, and interfering with autocrine NPY signaling of the MBs provoked similar brain-wide metaplastic changes. Our results in an exemplary fashion show that autophagy-regulated signaling emanating from a higher brain integration center can execute high-level control over other brain regions to steer life-strategy decisions such as whether or not to form memories.


Asunto(s)
Envejecimiento/metabolismo , Autofagia/genética , Drosophila melanogaster/metabolismo , Memoria/fisiología , Cuerpos Pedunculados/metabolismo , Neuropéptido Y/genética , Envejecimiento/genética , Animales , Comunicación Autocrina/genética , Proteínas Relacionadas con la Autofagia/antagonistas & inhibidores , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación de la Expresión Génica , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Cuerpos Pedunculados/citología , Neuronas/citología , Neuronas/metabolismo , Neuropéptido Y/deficiencia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
4.
Autophagy ; 13(2): 444-445, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28026976

RESUMEN

All animals form memories to adapt their behavior in a context-dependent manner. With increasing age, however, forming new memories becomes less efficient. While synaptic plasticity promotes memory formation, the etiology of age-induced memory formation remained enigmatic. Previous work showed that simple feeding of polyamine spermidine protects from age-induced memory impairment in Drosophila. Most recent work now shows that spermidine operates directly at synapses, allowing for an autophagy-dependent homeostatic regulation of presynaptic specializations. How exactly autophagic regulations intersect with synaptic plasticity should be an interesting subject for future research.


Asunto(s)
Autofagia/efectos de los fármacos , Espermidina/farmacología , Sinapsis/fisiología , Animales , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/fisiología , Memoria/efectos de los fármacos , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Sinapsis/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/fisiología
5.
PLoS Biol ; 14(9): e1002563, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27684064

RESUMEN

Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.

6.
Hum Mol Genet ; 24(23): 6736-55, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26376863

RESUMEN

ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.


Asunto(s)
Trastornos del Conocimiento/etiología , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Degeneración Nerviosa/etiología , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/genética , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Drosophila , Femenino , Técnicas de Silenciamiento del Gen , Discapacidad Intelectual/genética , Masculino , Ratones , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Trastornos Parkinsonianos/genética , Sinapsis/metabolismo , Sinapsis/fisiología , Sinapsis/ultraestructura
7.
Cell Metab ; 19(3): 431-44, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24606900

RESUMEN

Healthy aging depends on removal of damaged cellular material that is in part mediated by autophagy. The nutritional status of cells affects both aging and autophagy through as-yet-elusive metabolic circuitries. Here, we show that nucleocytosolic acetyl-coenzyme A (AcCoA) production is a metabolic repressor of autophagy during aging in yeast. Blocking the mitochondrial route to AcCoA by deletion of the CoA-transferase ACH1 caused cytosolic accumulation of the AcCoA precursor acetate. This led to hyperactivation of nucleocytosolic AcCoA-synthetase Acs2p, triggering histone acetylation, repression of autophagy genes, and an age-dependent defect in autophagic flux, culminating in a reduced lifespan. Inhibition of nutrient signaling failed to restore, while simultaneous knockdown of ACS2 reinstated, autophagy and survival of ach1 mutant. Brain-specific knockdown of Drosophila AcCoA synthetase was sufficient to enhance autophagic protein clearance and prolong lifespan. Since AcCoA integrates various nutrition pathways, our findings may explain diet-dependent lifespan and autophagy regulation.


Asunto(s)
Autofagia , Coenzima A Ligasas/metabolismo , Proteínas de Drosophila/metabolismo , Longevidad , Acetilcoenzima A/biosíntesis , Acetilación , Envejecimiento , Animales , Proteína 7 Relacionada con la Autofagia , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/genética , Drosophila/enzimología , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Metabolismo Energético , Histonas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación hacia Arriba
8.
Autophagy ; 10(1): 178-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24262970

RESUMEN

The aging process drives the progressive deterioration of an organism and is thus subject to a complex interplay of regulatory and executing mechanisms. Our understanding of this process eventually aims at the delay and/or prevention of age-related pathologies, among them the age-dependent decrease in cognitive performance (e.g., learning and memory). Using the fruit fly Drosophila melanogaster, which combines a generally high mechanistic conservation with an efficient experimental access regarding aging and memory studies, we have recently unveiled a protective function of polyamines (including spermidine) against age-induced memory impairment (AMI). The flies' age-dependent decline of aversive olfactory memory, an established model for AMI, can be rescued by both pharmacological treatment with spermidine and genetic modulation that increases endogenous polyamine levels. Notably, we find that this effect strictly depends on autophagy, which is remarkable in light of the fact that autophagy is considered a key regulator of aging in other contexts. Given that polyamines in general and spermidine in particular are endogenous metabolites, our findings place them as candidate target substances for AMI treatment.


Asunto(s)
Envejecimiento/efectos de los fármacos , Autofagia/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/fisiología , Memoria/efectos de los fármacos , Espermidina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología
9.
Nat Neurosci ; 16(10): 1453-60, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23995066

RESUMEN

Age-dependent memory impairment is known to occur in several organisms, including Drosophila, mouse and human. However, the fundamental cellular mechanisms that underlie these impairments are still poorly understood, effectively hampering the development of pharmacological strategies to treat the condition. Polyamines are among the substances found to decrease with age in the human brain. We found that levels of polyamines (spermidine, putrescine) decreased in aging fruit flies, concomitant with declining memory abilities. Simple spermidine feeding not only restored juvenile polyamine levels, but also suppressed age-induced memory impairment. Ornithine decarboxylase-1, the rate-limiting enzyme for de novo polyamine synthesis, also protected olfactory memories in aged flies when expressed specifically in Kenyon cells, which are crucial for olfactory memory formation. Spermidine-fed flies showed enhanced autophagy (a form of cellular self-digestion), and genetic deficits in the autophagic machinery prevented spermidine-mediated rescue of memory impairments. Our findings indicate that autophagy is critical for suppression of memory impairments by spermidine and that polyamines, which are endogenously present, are candidates for pharmacological intervention.


Asunto(s)
Envejecimiento/patología , Autofagia/fisiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores/metabolismo , Poliaminas/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Autofagia/efectos de los fármacos , Drosophila , Trastornos de la Memoria/patología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Poliaminas/farmacología , Poliaminas/uso terapéutico , Espermidina/metabolismo , Espermidina/farmacología , Espermidina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA