Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747174

RESUMEN

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Asunto(s)
Fósforo , Raíces de Plantas , Silicatos , Microbiología del Suelo , Suelo , Fósforo/metabolismo , Suelo/química , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Silicatos/metabolismo , Micorrizas/fisiología , Compuestos de Calcio , Carbono/metabolismo
2.
J Environ Manage ; 354: 120318, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387347

RESUMEN

In desert wetlands, the decline in ground water table results in desertification, triggering soil carbon and nutrient loss. However, the impacts of desertification on soil dissolved organic carbon (DOC) properties which determine the turnover of soil carbon and nutrients are unclear. Here, the desertification gradient was represented by the distance from the wetland center (0∼240 m) traversing reed marshes, desert shrubs and bare sandy land in the Hongjian Nur Basin, north China. Soil DOC properties were determined by ultraviolet and fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). Results showed that soil DOC content decreased significantly from 107.23 mg kg-1 to 8.44 mg kg-1 by desertification (p < 0.05). However, the proportion of DOC to soil organic carbon (SOC) was gradually significantly increased. According to spectral parameters, microbial-derived DOC decreased from 0 to 120 m (reed marshes to desert shrubs) but increased from 120 to 240 m (desert shrubs to bare sandy lands), with a reverse hump-shaped distribution pattern. The molecular weight and aromaticity of DOC increased from 0 to 120 m but decreased from 120 to 240 m, with a hump-shaped distribution pattern. For the DOC composition, although the relative abundances of humic-acid components remained stable (p > 0.05), they were ultimately decreased by serious desertification and the amino acids became the dominant component. A similar change pattern was also found for humification index. Additionally, MBC and C:N were the two most important variables in determining the content and spectral properties, respectively. Together, these findings relationships between the soil DOC properties and desertification degree, especially the increase in DOC proportion and the decrease in humification degree, which may reduce soil C stabilization in the Hongjian Nur Basin.


Asunto(s)
Arena , Suelo , Suelo/química , Humedales , Materia Orgánica Disuelta , Carbono/análisis , Conservación de los Recursos Naturales , China
3.
Plants (Basel) ; 12(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38005751

RESUMEN

As a vital component of biodiversity, phyllosphere bacteria in forest canopy play a critical role in maintaining plant health and influencing the global biogeochemical cycle. There is limited research on the community structure of phyllosphere bacteria in natural forests, which creates a gap in our understanding of whether and/or how phyllosphere bacteria are connected to leaf traits of their host. In this study, we investigated the bacterial diversity and composition of the canopy leaves of six dominant tree species in deciduous broad-leaved forests in northeastern China, using high-throughput sequencing. We then compare the differences in phyllosphere bacterial community structure and functional genes of dominant tree species. Fourteen key leaf functional traits of their host trees were also measured according to standard protocols to investigate the relationships between bacterial community composition and leaf functional traits. Our result suggested that tree species with closer evolutionary distances had similar phyllosphere microbial alpha diversity. The dominant phyla of phyllosphere bacteria were Proteobacteria, Actinobacteria, and Firmicutes. For these six tree species, the functional genes of phyllosphere bacteria were mainly involved in amino acid metabolism and carbohydrate metabolism processes. The redundancy and envfit analysis results showed that the functional traits relating to plant nutrient acquisition and resistance to diseases and pests (such as leaf area, isotope carbon content, and copper content) were the main factors influencing the community structure of phyllosphere bacteria. This study highlights the key role of plant interspecific genetic relationships and plant attributes in shaping phyllosphere bacterial diversity.

4.
J Environ Manage ; 303: 114215, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864590

RESUMEN

The resource acquisition strategy of soil microorganisms can be reflected by soil extracellular enzyme activity (EEA). However, there are few reports on the application of extracellular enzyme stoichiometry (EES) method to study the difference in microbial metabolic nutrient limitation between rhizosphere and bulk soil. Here, we choose the rhizosphere and bulk soils of Pinus sylvestris var. mongolica (P. sylvestris) plantations with five stand ages in the Mu Us sandy land, and analyzed the variation and differences of microbial metabolic limitation between rhizosphere and bulk soils with stand age by EES method. The results showed that the microbial metabolic C-limitation in the rhizosphere and bulk soil gradually increased with stand age. Almost all the vector angles were less than 45°, which indicated that the soil microbial metabolism was relatively limited by N rather than P. Furthermore, the microbial C- and N-limitation in rhizosphere soils were generally stronger than bulk soils. Soil physical properties (59.73%) explained most of the variations in soil EES based on the variation-partitioning analysis, followed by total nutrients (43.00%). The partial least squares path model suggested that the main driving factor for the variation of soil microbial metabolic C-limitation in the rhizosphere and bulk soils was physical properties, while the microbial N-limitation was for total nutrients. In general, the study emphasized the application of EES methods to assess the dynamic equilibrium between soil microbial resource acquisition and nutrient availability in desert ecosystems. These insights provide guidance for formulating afforestation strategies, such as nutrient management of sandy plantations.


Asunto(s)
Rizosfera , Suelo , Ecosistema , Nutrientes , Microbiología del Suelo
5.
J Environ Manage ; 287: 112306, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714736

RESUMEN

Soil microbial communities maintain multiple ecosystem functions in terrestrial ecosystems. The response of soil microbial communities to vegetation restoration in desertification environments is still poorly understood. Therefore, the purpose of our study was to evaluate the dynamic changes of the soil microbial community during the growth of Pinus sylvestris var. mongolic (P. sylvestris) plantations. We collected soil samples from five P. sylvestris plantations with different stand age. High-throughput sequencing was performed to determine the microbial community structure. The dynamic relationship between soil microbial community and edaphic factors was analyzed using the co-occurrence network, mantel test and partial least squares path modeling. The results showed that the soil microbial alpha diversity and community structure were significantly various among the plantations (P < 0.001). The number of nodes and edges in microbial co-occurrence network gradually decreased and the interrelationships between species became weak with stand age. The Available phosphorus was the most significant factor affecting the structure of bacterial community (R2 = 0.952), while the total phosphorus was the most significant factor affecting the structure of fungal community (R2 = 0.745). However, soil moisture had no significant effect on the microbial community. pH (0.73) and available nitrogen (0.91) had the largest positive total effects on bacterial and fungal community, respectively. Stand age (-0.65) was an indirect factor with the largest negative total effects on the bacterial community. Therefore, we concluded that the soil microbial community was not limited by soil moisture during the natural restoration process of P. sylvestris plantations in the desertification environment and the phosphorus utilization efficiency played a leading role in shaping the soil microbial community.


Asunto(s)
Microbiota , Pinus sylvestris , Pinus , China , Fósforo , Arena , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA